1
|
Wang X, Jiang D, Li T, Zhang X, Wang R, Gao S, Yang F, Wang Y, Tian Q, Xie C, Liang J. Association between microbiological risk factors and neurodegenerative disorders: An umbrella review of systematic reviews and meta-analyses. Front Psychiatry 2022; 13:991085. [PMID: 36213914 PMCID: PMC9537612 DOI: 10.3389/fpsyt.2022.991085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The role of microbiological factors in the development of neurodegenerative diseases is attracting increasing attention, while the relationship remains debated. This study aimed to comprehensively summarize and evaluate the associations between microbiological factors and the risk of neurodegenerative disorders with an umbrella review. PubMed, Embase, and the Cochrane library were used to search for papers from the earliest to March 2021 for identifying meta-analyses and systematic reviews that examined associations between microbiological factors and neurodegenerative diseases. AMSTAR2 tool was employed to evaluate the methodical quality of systematic reviews and meta-analyses. The effect size and 95% confidence interval (95% CI) were recalculated with a random effect model after the overlap was recognized by the corrected covered area (CCA) method. The heterogeneity of each meta-analysis was measured by the I 2 statistic and 95% prediction interval (95% PI). Additionally, publication bias and the quality of evidence were evaluated for all 37 unique associations. Only 4 associations had above the medium level of evidence, and the rest associations presented a low level of evidence. Among them, helicobacter pylori (HP), infection, and bacteria are associated with Parkinson's disease (PD), and the other one verifies that periodontal disease is a risk factor for all types of dementia. Following the evidence of our study, eradication of HP and aggressive treatment of periodontitis are beneficial for the prevention of PD and dementia, respectively. This umbrella review provides comprehensive quality-grade evidence on the relationship between microbial factors and neurodegenerative disease. Regardless of much evidence linking microbial factors to neurodegenerative diseases, these associations are not necessarily causal, and the evidence level is generally low. Thus, more effective studies are required. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/#searchadvanced, PROSPERO, identifier: CRD42021239512.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianxiong Li
- Surgery Centre of Diabetes Mellitus, Peking University Ninth School of Clinical Medicine (Beijing Shijitan Hospital, Capital Medical University), Beijing, China
| | - Xiao Zhang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ran Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Song Gao
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Fengyi Yang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Yan Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Qi Tian
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chunrong Xie
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
- Chunrong Xie
| | - Jinghong Liang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jinghong Liang
| |
Collapse
|
2
|
Sian-Hülsmann J. Wilful pathogens provoke a gut feeling in Parkinson’s disease. J Neural Transm (Vienna) 2021; 129:557-562. [PMID: 34923593 PMCID: PMC8684782 DOI: 10.1007/s00702-021-02448-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Parkinson’s disease is the second most common neurological disorder marked by characteristic poverty and dysfunction in movement. There are many mechanisms and factors which have been postulated to be associated with the neurodegenerative pathway(s) resulting in distinctive loss of neurons in the substantia nigra. Subsequently, the neuropathology is more widespread and exhibited in other areas of the brain, and enteric nervous system. Aggregates of misfolded α-synuclein or Lewy bodies are the hallmark of the illness and appear to be central in the whole cascade of cell destruction. There are many processes implicated in neuronal destruction including: oxidative stress, excitotoxicity, mitochondrial dysfunction, an imbalance in protein homeostasis and neuroinflammation. Interesting, inflammation induced by pathogens (including, bacteria and viruses) has been associated in the pathogenesis of the disease. Bacteria such as Helicobacter pylori and Helicobacter suis appear to colonise the gut, and elicit systemic immune responses, which is them transmitted via the gut-axis to the brain, where cytotoxic cytokines induce neuroinflammation and cell death. This conforms to the bottom–top hypothesis proposed by Braak. The gut is also implicated in two other theories postulated in the development and progression of the disorder, namely, the top–down and the threshold. There is a possibility that these theories may be inter-linked and operate together to certain degree. Ultimately specific trigger factors or conditions may govern the occurrences of these processes in genetically predisposed individuals. Nevertheless, the importance of pathogen-related gut infections cannot be overlooked, since it can result in dysbiosis of gut microbes, which may orchestrate α-synuclein pathology and eventually cell destruction.
Collapse
Affiliation(s)
- Jeswinder Sian-Hülsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya.
| |
Collapse
|
3
|
Ankylosing spondylitis: an autoimmune or autoinflammatory disease? Nat Rev Rheumatol 2021; 17:387-404. [PMID: 34113018 DOI: 10.1038/s41584-021-00625-y] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disorder of unknown aetiology. Unlike other systemic autoimmune diseases, in AS, the innate immune system has a dominant role characterized by aberrant activity of innate and innate-like immune cells, including γδ T cells, group 3 innate lymphoid cells, neutrophils, mucosal-associated invariant T cells and mast cells, at sites predisposed to the disease. The intestine is involved in disease manifestations, as it is at the forefront of the interaction between the mucosal-associated immune cells and the intestinal microbiota. Similarly, biomechanical factors, such as entheseal micro-trauma, might also be involved in the pathogenesis of the articular manifestation of AS, and sentinel immune cells located in the entheses could provide links between local damage, genetic predisposition and the development of chronic inflammation. Although these elements might support the autoinflammatory nature of AS, studies demonstrating the presence of autoantibodies (such as anti-CD74, anti-sclerostin and anti-noggin antibodies) and evidence of activation and clonal expansion of T cell populations support an autoimmune component to the disease. This Review presents the evidence for autoinflammation and the evidence for autoimmunity in AS and, by discussing the pathophysiological factors associated with each, aims to reconcile the two hypotheses.
Collapse
|
4
|
Sian-Hulsmann J, Riederer P. The Nigral Coup in Parkinson's Disease by α-Synuclein and Its Associated Rebels. Cells 2021; 10:598. [PMID: 33803185 PMCID: PMC8000327 DOI: 10.3390/cells10030598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
The risk of Parkinson's disease increases with age. However, the etiology of the illness remains obscure. It appears highly likely that the neurodegenerative processes involve an array of elements that influence each other. In addition, genetic, endogenous, or exogenous toxins need to be considered as viable partners to the cellular degeneration. There is compelling evidence that indicate the key involvement of modified α-synuclein (Lewy bodies) at the very core of the pathogenesis of the disease. The accumulation of misfolded α-synuclein may be a consequence of some genetic defect or/and a failure of the protein clearance system. Importantly, α-synuclein pathology appears to be a common denominator for many cellular deleterious events such as oxidative stress, mitochondrial dysfunction, dopamine synaptic dysregulation, iron dyshomeostasis, and neuroinflammation. These factors probably employ a common apoptotic/or autophagic route in the final stages to execute cell death. The misfolded α-synuclein inclusions skillfully trigger or navigate these processes and thus amplify the dopamine neuron fatalities. Although the process of neuroinflammation may represent a secondary event, nevertheless, it executes a fundamental role in neurodegeneration. Some viral infections produce parkinsonism and exhibit similar characteristic neuropathological changes such as a modest brain dopamine deficit and α-synuclein pathology. Thus, viral infections may heighten the risk of developing PD. Alternatively, α-synuclein pathology may induce a dysfunctional immune system. Thus, sporadic Parkinson's disease is caused by multifactorial trigger factors and metabolic disturbances, which need to be considered for the development of potential drugs in the disorder.
Collapse
Affiliation(s)
- Jeswinder Sian-Hulsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, 00100 Nairobi, Kenya
| | - Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy Margarete-Hoeppel-Platz 1, University Hospital Wuerzburg, 97080 Wuerzburg, Germany;
- Department Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000 Odense, Denmark
| |
Collapse
|
5
|
Bale S, Varga J, Bhattacharyya S. Role of RP105 and A20 in negative regulation of toll-like receptor activity in fibrosis: potential targets for therapeutic intervention. AIMS ALLERGY AND IMMUNOLOGY 2021. [DOI: 10.3934/allergy.2021009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Luo Q, Fu B, Zhang L, Guo Y, Huang Z, Li J. Expression and clinical significance of circular RNA hsa_circ_0079787 in the peripheral blood of patients with axial spondyloarthritis. Mol Med Rep 2020; 22:4197-4206. [PMID: 33000244 PMCID: PMC7533439 DOI: 10.3892/mmr.2020.11520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
Axial spondyloarthritis (AxSpA) is a chronic rheumatic disease involving the axial skeleton. Recent evidence suggested that certain circular RNAs (circRNAs) have a crucial role in rheumatic diseases. However, the functions of circRNAs in AxSpA have remained largely elusive. The present study identified the utility of the circRNA Homo sapiens (hsa)_circ_0079787 as a potential biomarker for AxSpA. A total of 5 circRNAs (hsa_circ_0002715, hsa_circ_0001947, hsa_circ_0079787, hsa_circ_0000367 and hsa_circ_0035197) were determined in the peripheral blood of 46 patients with AxSpA, 46 patients with systemic lupus erythematosus (SLE) and 25 healthy controls (HC) by reverse transcription‑quantitative PCR analysis. The detailed clinical history of each patient was recorded and the correlations between these circRNAs and clinical characteristics were analyzed. Furthermore, receiver operating characteristic (ROC) curves were constructed to evaluate the diagnostic value of hsa_circ_0079787 and other factors for AxSpA. Of the 5 selected circRNAs, the expression of hsa_circ_0079787 was indicated to be significantly reduced in the peripheral blood of patients with AxSpA as compared with the levels in HCs and patients with SLE. The peripheral blood levels of hsa_circ_0079787 in patients with AxSpA were negatively correlated with the Bath Ankylosing Spondylitis Disease Activity Index and positively correlated with the platelet count (PLT) and the lymphocyte‑to‑monocyte ratio. In addition, the expression of peripheral blood hsa_circ_0079787 in male patients with AxSpA was negatively correlated with the mean platelet volume (MPV) and positively correlated with the plateletcrit (PCT). ROC curve analysis suggested that hsa_circ_0079787 and the combination of hsa_circ_0079787‑PLT‑MPV‑PCT had a significant diagnostic value for AxSpA. hsa_circ_0079787 and the combination of hsa_circ_0079787‑PLT‑MPV‑PCT was also able to differentiate between patients with AxSpA and those with SLE. In conclusion, peripheral‑blood hsa_circ_0079787 and the combination of hsa_circ_0079787‑PLT‑MPV‑PCT may provide improved diagnostic accuracy for AxSpA. In addition, the levels of hsa_circ_0079787 in the peripheral blood were correlated with disease activity and severity of AxSpA.
Collapse
Affiliation(s)
- Qing Luo
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Biqi Fu
- Department of Rheumatology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lu Zhang
- Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yang Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zikun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Junming Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
7
|
Mazzio EA, Lewis CA, Elhag R, Soliman KF. Effects of Sepantronium Bromide (YM-155) on the Whole Transcriptome of MDA-MB-231 Cells: Highlight on Impaired ATR/ATM Fanconi Anemia DNA Damage Response. Cancer Genomics Proteomics 2018; 15:249-264. [PMID: 29976630 PMCID: PMC6070710 DOI: 10.21873/cgp.20083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 12/18/2022] Open
Abstract
Sepantronium bromide (YM-155) is believed to elicit apoptosis and mitotic arrest in tumor cells by reducing (BIRC5, survivin) mRNA. In this study, we monitored changes in survivin mRNA and protein after treating MDA-MB-231 cells with YM-155 concurrent with evaluation of whole transcriptomic (WT) mRNA and long intergenic non-coding RNA at 2 time points: 8 h sub-lethal (83 ng/mL) and 20 h at the LC50 (14.6 ng/mL). The data show a tight association between cell death and the precipitating loss of survivin protein and mRNA (-2.67 fold-change (FC), p<0.001) at 20 h, questioning if the decline in survivin is attributed to cell death or drug impact. The meager loss of survivin mRNA was overshadowed by enormous differential change to the WT in both magnitude and significance for over 2000 differentially up/down-regulated transcripts: (+22 FC to -12 FC, p<0.001). The data show YM-155 to up-regulate transcripts in control of circadian rhythm (NOCT, PER, BHLHe40, NFIL3), tumor suppression (SIK1, FOSB), histone methylation (KDM6B) and negative feedback of NF-kappa B signaling (TNFAIP3). Down-regulated transcripts by YM-155 include glucuronidase (GUSBP3), numerous micro-RNAs, DNA damage repair elements (CENPI, POLQ, RAD54B) and the most affected system was the ataxia-telangiectasia mutated (ATM)/Fanconi anemia E3 monoubiquitin ligase core complexes (FANC transcripts - A/B/E/F/G/M), FANC2, FANCI, BRCA1, BRCA2, RAD51, PALB2 gene and ATR (ATM- and Rad3-Related) pathway. In conclusion, these findings suggest that a primary target of YM-155 is the loss of replicative DNA repair systems.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Charles A Lewis
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Rashid Elhag
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F Soliman
- College of Pharmacy & Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|