1
|
Gericke GS. A Unifying Hypothesis for the Genome Dynamics Proposed to Underlie Neuropsychiatric Phenotypes. Genes (Basel) 2024; 15:471. [PMID: 38674405 PMCID: PMC11049865 DOI: 10.3390/genes15040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The sheer number of gene variants and the extent of the observed clinical and molecular heterogeneity recorded in neuropsychiatric disorders (NPDs) could be due to the magnified downstream effects initiated by a smaller group of genomic higher-order alterations in response to endogenous or environmental stress. Chromosomal common fragile sites (CFS) are functionally linked with microRNAs, gene copy number variants (CNVs), sub-microscopic deletions and duplications of DNA, rare single-nucleotide variants (SNVs/SNPs), and small insertions/deletions (indels), as well as chromosomal translocations, gene duplications, altered methylation, microRNA and L1 transposon activity, and 3-D chromosomal topology characteristics. These genomic structural features have been linked with various NPDs in mostly isolated reports and have usually only been viewed as areas harboring potential candidate genes of interest. The suggestion to use a higher level entry point (the 'fragilome' and associated features) activated by a central mechanism ('stress') for studying NPD genetics has the potential to unify the existing vast number of different observations in this field. This approach may explain the continuum of gene findings distributed between affected and unaffected individuals, the clustering of NPD phenotypes and overlapping comorbidities, the extensive clinical and molecular heterogeneity, and the association with certain other medical disorders.
Collapse
|
2
|
Steele EJ, Franklin A, Lindley RA. Somatic mutation patterns at Ig and Non-Ig Loci. DNA Repair (Amst) 2024; 133:103607. [PMID: 38056368 DOI: 10.1016/j.dnarep.2023.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
The reverse transcriptase (RT) model of immunoglobulin (Ig) somatic hypermutation (SHM) has received insufficient scientific attention. This is understandable given that DNA deamination mediated by activation-induced deaminase (AID), the initiating step of Ig SHM, has dominated experiments since 2002. We summarise some key history of the RT Ig SHM model dating to 1987. For example, it is now established that DNA polymerase η, the sole DNA repair polymerase involved in post-replication short-patch repair, is an efficient cellular RT. This implies that it is potentially able to initiate target site reverse transcription by RNA-directed DNA repair at AID-induced lesions. Recently, DNA polymerase θ has also been shown to be an efficient cellular RT. Since DNA polymerase θ plays no significant role in Ig SHM, it could serve a similar RNA-dependent DNA polymerase role as DNA polymerase η at non-Ig loci in the putative RNA-templated nucleotide excision repair of bulky adducts and other mutagenic lesions on the transcribed strand. A major yet still poorly recognised consequence of the proposed RT process in Ig SHM is the generation of significant and characteristic strand-biased mutation signatures at both deoxyadenosine/deoxythymidine and deoxyguanosine/deoxycytidine base pairs. In this historical perspective, we highlight how diagnostic strand-biased mutation signatures are detected in vivo during SHM at both Ig loci in germinal centre B lymphocytes and non-Ig loci in cancer genomes. These strand-biased signatures have been significantly obscured by technical issues created by improper use of the polymerase chain reaction technique. A heightened awareness of this fact should contribute to better data interpretation and somatic mutation pattern recognition both at Ig and non-Ig loci.
Collapse
Affiliation(s)
- Edward J Steele
- Melville Analytics Pty Ltd, 2/102 Duke St, Kangaroo Point, Brisbane 4169, Qld, Australia.
| | - Andrew Franklin
- Novartis Pharmaceuticals UK Limited, The WestWorks Building, White City Place, 195 Wood Lane, W12 7FQ London, United Kingdom
| | - Robyn A Lindley
- GMDxgenomics, Suite 201, 697 Burke Rd, Camberwell, Melbourne 3124, Vic, Australia; Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Vic, Australia
| |
Collapse
|
3
|
Gorlov IP, Xia X, Tsavachidis S, Gorlova OY, Amos CI. Tumor somatic mutations also existing as germline polymorphisms may help to identify functional SNPs from genome-wide association studies. Carcinogenesis 2020; 41:1353-1362. [PMID: 32681635 DOI: 10.1093/carcin/bgaa077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/06/2020] [Accepted: 07/15/2020] [Indexed: 11/12/2022] Open
Abstract
We hypothesized that a joint analysis of cancer risk-associated single-nucleotide polymorphism (SNP) and somatic mutations in tumor samples can predict functional and potentially causal SNPs from GWASs. We used mutations reported in the Catalog of Somatic Mutations in Cancer (COSMIC). Confirmed somatic mutations were subdivided into two groups: (1) mutations reported as SNPs, which we call mutational/SNPs and (2) somatic mutations that are not reported as SNPs, which we call mutational/noSNPs. It is generally accepted that the number of times a somatic mutation is reported in COSMIC correlates with its selective advantage to tumors, with more frequently reported mutations being more functional and providing a stronger selective advantage to the tumor cell. We found that mutations reported ≥10 times in COSMIC-frequent mutational/SNPs (fmSNPs) are likely to be functional. We identified 12 cancer risk-associated SNPs reported in the Catalog of published GWASs at least 10 times as confirmed somatic mutations and therefore deemed to be functional. Additionally, we have identified 42 SNPs that are tightly linked (R2 ≥ 0.8) to SNPs reported in the Catalog of published GWASs as cancer risk associated and that are also reported as fmSNPs. As a result, 54 candidate functional/potentially causal cancer risk associated SNPs were identified. We found that fmSNPs are more likely to be located in evolutionarily conserved regions compared with cancer risk associated SNPs that are not fmSNPs. We also found that fmSNPs also underwent positive selection, which can explain why they exist as population polymorphisms.
Collapse
Affiliation(s)
- Ivan P Gorlov
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Mailstop BCM451, Houston, TX, USA
| | - Xiangjun Xia
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Mailstop BCM451, Houston, TX, USA
| | - Spiridon Tsavachidis
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Mailstop BCM451, Houston, TX, USA
| | - Olga Y Gorlova
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Mailstop BCM451, Houston, TX, USA
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Mailstop BCM451, Houston, TX, USA
| |
Collapse
|
4
|
Meers C, Keskin H, Banyai G, Mazina O, Yang T, Gombolay AL, Mukherjee K, Kaparos EI, Newnam G, Mazin A, Storici F. Genetic Characterization of Three Distinct Mechanisms Supporting RNA-Driven DNA Repair and Modification Reveals Major Role of DNA Polymerase ζ. Mol Cell 2020; 79:1037-1050.e5. [PMID: 32882183 DOI: 10.1016/j.molcel.2020.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 01/08/2023]
Abstract
DNA double-stranded breaks (DSBs) are dangerous lesions threatening genomic stability. Fidelity of DSB repair is best achieved by recombination with a homologous template sequence. In yeast, transcript RNA was shown to template DSB repair of DNA. However, molecular pathways of RNA-driven repair processes remain obscure. Utilizing assays of RNA-DNA recombination with and without an induced DSB in yeast DNA, we characterize three forms of RNA-mediated genomic modifications: RNA- and cDNA-templated DSB repair (R-TDR and c-TDR) using an RNA transcript or a DNA copy of the RNA transcript for DSB repair, respectively, and a new mechanism of RNA-templated DNA modification (R-TDM) induced by spontaneous or mutagen-induced breaks. While c-TDR requires reverse transcriptase, translesion DNA polymerase ζ (Pol ζ) plays a major role in R-TDR, and it is essential for R-TDM. This study characterizes mechanisms of RNA-DNA recombination, uncovering a role of Pol ζ in transferring genetic information from transcript RNA to DNA.
Collapse
Affiliation(s)
- Chance Meers
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Havva Keskin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gabor Banyai
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Olga Mazina
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Taehwan Yang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alli L Gombolay
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kuntal Mukherjee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Efiyenia I Kaparos
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gary Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alexander Mazin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Francesca Storici
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
5
|
Franklin A, Steele EJ, Lindley RA. A proposed reverse transcription mechanism for (CAG)n and similar expandable repeats that cause neurological and other diseases. Heliyon 2020; 6:e03258. [PMID: 32140575 PMCID: PMC7044655 DOI: 10.1016/j.heliyon.2020.e03258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/26/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanism of (CAG)n repeat generation, and related expandable repeat diseases in non-dividing cells, is currently understood in terms of a DNA template-based DNA repair synthesis process involving hairpin stabilized slippage, local error-prone repair via MutSβ (MSH2-MSH3) hairpin protective stabilization, then nascent strand extension by DNA polymerases-β and -δ. We advance a very similar slipped hairpin-stabilized model involving MSH2-MSH3 with two key differences: the copying template may also be the nascent pre-mRNA with the repair pathway being mediated by the Y-family error-prone enzymes DNA polymerase-η and DNA polymerase-κ acting as reverse transcriptases. We argue that both DNA-based and RNA-based mechanisms could well be activated in affected non-dividing brain cells in vivo. Here, we compare the advantages of the RNA/RT-based model proposed by us as an adjunct to previously proposed models. In brief, our model depends upon dysregulated innate and adaptive immunity cascades involving AID/APOBEC and ADAR deaminases that are known to be involved in normal locus-specific immunoglobulin somatic hypermutation, cancer progression and somatic mutations at many off-target non-immunoglobulin sites across the genome: we explain how these processes could also play an active role in repeat expansion diseases at RNA polymerase II-transcribed genes.
Collapse
Affiliation(s)
- Andrew Franklin
- Medical Department, Novartis Pharmaceuticals UK Limited, 200 Frimley Business Park, Frimley, Surrey, GU16 7SR, United Kingdom
| | - Edward J. Steele
- Melville Analytics Pty Ltd, Melbourne, Vic, 3004, Australia
- CYO’Connor ERADE Village Foundation, Perth, WA, Australia
| | - Robyn A. Lindley
- GMDxgenomics, Melbourne, Vic, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Vic, Australia
| |
Collapse
|
6
|
Steele EJ, Lindley RA. Regulatory T cells and co-evolution of allele-specific MHC recognition by the TCR. Scand J Immunol 2019; 91:e12853. [PMID: 31793005 PMCID: PMC7064991 DOI: 10.1111/sji.12853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022]
Abstract
What is the evolutionary mechanism for the TCR-MHC-conserved interaction? We extend Dembic's model (Dembic Z. In, Scand J Immunol e12806, 2019) of thymus positive selection for high-avidity anti-self-MHC Tregs among double (CD4 + CD8+)-positive (DP) developing thymocytes. This model is based on competition for self-MHC (+ Pep) complexes presented on cortical epithelium. Such T cells exit as CD4 + CD25+FoxP3 + thymic-derived Tregs (tTregs). The other positively selected DP T cells are then negatively selected on medulla epithelium removing high-avidity anti-self-MHC + Pep as T cells commit to CD4 + or CD8 + lineages. The process is likened to the competitive selection and affinity maturation in Germinal Centre for the somatic hypermutation (SHM) of rearranged immunoglobulin (Ig) variable region (V[D]Js) of centrocytes bearing antigen-specific B cell receptors (BCR). We now argue that the same direct SHM processes for TCRs occur in post-antigenic Germinal Centres, but now occurring in peripheral pTregs. This model provides a potential solution to a long-standing problem previously recognized by Cohn and others (Cohn M, Anderson CC, Dembic Z. In, Scand J Immunol e12790, 2019) of how co-evolution occurs of species-specific MHC alleles with the repertoire of their germline TCR V counterparts. We suggest this is not by 'blind', slow, and random Darwinian natural selection events, but a rapid structured somatic selection vertical transmission process. The pTregs bearing somatic TCR V mutant genes then, on arrival in reproductive tissues, can donate their TCR V sequences via soma-to-germline feedback as discussed in this journal earlier. (Steele EJ, Lindley RA. In, Scand J Immunol e12670, 2018) The high-avidity tTregs also participate in the same process to maintain a biased, high-avidity anti-self-MHC germline V repertoire.
Collapse
Affiliation(s)
- Edward J Steele
- Melville Analytics Pty Ltd, Melbourne, Vic, Australia.,CYO'Connor ERADE Village Foundation, Perth, WA, Australia
| | - Robyn A Lindley
- GMDxCo Pty Ltd, Melbourne, Vic, Australia.,Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
7
|
Shi Z, Zhang Q, Yan H, Yang Y, Wang P, Zhang Y, Deng Z, Yu M, Zhou W, Wang Q, Yang X, Mo X, Zhang C, Huang J, Dai H, Sun B, Zhao Y, Zhang L, Yang YG, Qiu X. More than one antibody of individual B cells revealed by single-cell immune profiling. Cell Discov 2019; 5:64. [PMID: 31839985 PMCID: PMC6901605 DOI: 10.1038/s41421-019-0137-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Antibodies have a common structure consisting of two identical heavy (H) and two identical light (L) chains. It is widely accepted that a single mature B cell produces a single antibody through restricted synthesis of only one VHDJH (encoding the H-chain variable region) and one VLJL (encoding the L-chain variable region) via recombination. Naive B cells undergo class-switch recombination (CSR) from initially producing membrane-bound IgM and IgD to expressing more effective membrane-bound IgG, IgA, or IgE when encountering antigens. To ensure the "one cell - one antibody" paradigm, only the constant region of the H chain is replaced during CSR, while the rearranged VHDJH pattern and the L chain are kept unchanged. To define those long-standing classical concepts at the single-cell transcriptome level, we applied the Chromium Single-Cell Immune Profiling Solution and Sanger sequencing to evaluate the Ig transcriptome repertoires of single B cells. Consistent with the "one cell - one antibody" rule, most of the B cells showed one V(D)J recombination pattern. Intriguingly, however, two or more VHDJH or VLJL recombination patterns of IgH chain or IgL chain were also observed in hundreds to thousands of single B cells. Moreover, each Ig class showed unique VHDJH recombination pattern in a single B-cell expressing multiple Ig classes. Together, our findings reveal an unprecedented presence of multi-Ig specificity in some single B cells, implying regulation of Ig gene rearrangement and class switching that differs from the classical mechanisms of both the "one cell - one antibody" rule and CSR.
Collapse
Affiliation(s)
- Zhan Shi
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Qingyang Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408 China
| | - Huige Yan
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Ying Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Yixiao Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
| | - Zhenling Deng
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
| | - Meng Yu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Wenjing Zhou
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Qianqian Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Xi Yang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057 China
- Department of Biomedical Science, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong China
| | - Xiaoning Mo
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Chi Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Baofa Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408 China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yongliang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408 China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
| | - Liang Zhang
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057 China
- Department of Biomedical Science, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408 China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101 China
- College of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing, 100191 China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, 100191 China
| |
Collapse
|
8
|
Steele EJ, Gorczynski RM, Lindley RA, Liu Y, Temple R, Tokoro G, Wickramasinghe DT, Wickramasinghe NC. Lamarck and Panspermia - On the Efficient Spread of Living Systems Throughout the Cosmos. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:10-32. [PMID: 31445944 DOI: 10.1016/j.pbiomolbio.2019.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
We review the main lines of evidence (molecular, cellular and whole organism) published since the 1970s demonstrating Lamarckian Inheritance in animals, plants and microorganisms viz. the transgenerational inheritance of environmentally-induced acquired characteristics. The studies in animals demonstrate the genetic permeability of the soma-germline Weismann Barrier. The widespread nature of environmentally-directed inheritance phenomena reviewed here contradicts a key pillar of neo-Darwinism which affirms the rigidity of the Weismann Barrier. These developments suggest that neo-Darwinian evolutionary theory is in need of significant revision. We argue that Lamarckian inheritance strategies involving environmentally-induced rapid directional genetic adaptations make biological sense in the context of cosmic Panspermia allowing the efficient spread of living systems and genetic innovation throughout the Universe. The Hoyle-Wickramasinghe Panspermia paradigm also developed since the 1970s, unlike strictly geocentric neo-Darwinism provides a cogent biological rationale for the actual widespread existence of Lamarckian modes of inheritance - it provides its raison d'être. Under a terrestrially confined neo-Darwinian viewpoint such an association may have been thought spurious in the past. Our aim is to outline the conceptual links between rapid Lamarckian-based evolutionary hypermutation processes dependent on reverse transcription-coupled mechanisms among others and the effective cosmic spread of living systems. For example, a viable, or cryo-preserved, living system travelling through space in a protective matrix will need of necessity to rapidly adapt and proliferate on landing in a new cosmic niche. Lamarckian mechanisms thus come to the fore and supersede the slow (blind and random) genetic processes expected under a traditional neo-Darwinian evolutionary paradigm.
Collapse
Affiliation(s)
- Edward J Steele
- C.Y.O'Connor ERADE Village Foundation, Piara Waters, Perth, 6112, WA, Australia; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Melville Analytics Pty Ltd, Melbourne, Vic, Australia.
| | | | - Robyn A Lindley
- Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of MelbourneVic, Australia; GMDx Group Ltd, Melbourne, Vic, Australia
| | - Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Robert Temple
- The History of Chinese Science and Culture Foundation, Conway Hall, London, UK
| | - Gensuke Tokoro
- Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Dayal T Wickramasinghe
- Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; College of Physical and Mathematical Sciences, Australian National University, Canberra, Australia
| | - N Chandra Wickramasinghe
- Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Institute for the Study of Panspermia and Astrobiology, Gifu, Japan; Buckingham Centre for Astrobiology, University of Buckingham, UK
| |
Collapse
|
9
|
Demongeot J, Seligmann H. Theoretical minimal RNA rings designed according to coding constraints mimic deamination gradients. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2019; 106:44. [DOI: 10.1007/s00114-019-1638-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 11/27/2022]
|
10
|
Liu Y. Darwin's Pangenesis and the Lamarckian Inheritance of Acquired Characters. ADVANCES IN GENETICS 2018; 101:115-144. [PMID: 30037391 DOI: 10.1016/bs.adgen.2018.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Since the earliest days of evolutionary thought, the problem of the inheritance of acquired characters has been a central debate. Darwin accepted the inheritance of acquired characters as an established fact and gave many instances. His Pangenesis was more than anything else an attempt to provide a theory for its explanation. Over the past several decades, there has been increasing evidence for the inheritance of acquired habit and immunity, and for heritable changes induced by food and fertilizer, stress, chemicals, temperature, light and other environmental factors. Many studies also suggest that parental age has certain influences on the characters of offspring. The current explanations include environmentally induced DNA changes (mainly DNA rearrangements and DNA methylation), RNA-mediated inheritance, and horizontal gene transfer. These mechanistic explanations are consistent with Darwin's Pangenesis.
Collapse
Affiliation(s)
- Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China; Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|