1
|
Root-Bernstein R. From Co-Infections to Autoimmune Disease via Hyperactivated Innate Immunity: COVID-19 Autoimmune Coagulopathies, Autoimmune Myocarditis and Multisystem Inflammatory Syndrome in Children. Int J Mol Sci 2023; 24:ijms24033001. [PMID: 36769320 PMCID: PMC9917907 DOI: 10.3390/ijms24033001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Neutrophilia and the production of neutrophil extracellular traps (NETs) are two of many measures of increased inflammation in severe COVID-19 that also accompany its autoimmune complications, including coagulopathies, myocarditis and multisystem inflammatory syndrome in children (MIS-C). This paper integrates currently disparate measures of innate hyperactivation in severe COVID-19 and its autoimmune complications, and relates these to SARS-CoV-2 activation of innate immunity. Aggregated data include activation of Toll-like receptors (TLRs), nucleotide-binding oligomerization domain (NOD) receptors, NOD leucine-rich repeat and pyrin-domain-containing receptors (NLRPs), retinoic acid-inducible gene I (RIG-I) and melanoma-differentiation-associated gene 5 (MDA-5). SARS-CoV-2 mainly activates the virus-associated innate receptors TLR3, TLR7, TLR8, NLRP3, RIG-1 and MDA-5. Severe COVID-19, however, is characterized by additional activation of TLR1, TLR2, TLR4, TLR5, TLR6, NOD1 and NOD2, which are primarily responsive to bacterial antigens. The innate activation patterns in autoimmune coagulopathies, myocarditis and Kawasaki disease, or MIS-C, mimic those of severe COVID-19 rather than SARS-CoV-2 alone suggesting that autoimmunity follows combined SARS-CoV-2-bacterial infections. Viral and bacterial receptors are known to synergize to produce the increased inflammation required to support autoimmune disease pathology. Additional studies demonstrate that anti-bacterial antibodies are also required to account for known autoantigen targets in COVID-19 autoimmune complications.
Collapse
|
2
|
Chevillard C, Amen A, Besson S, Hannani D, Bally I, Dettling V, Gout E, Moreau CJ, Buisson M, Gallet S, Fenel D, Vassal-Stermann E, Schoehn G, Poignard P, Dagher MC, Fender P. Elicitation of potent SARS-CoV-2 neutralizing antibody responses through immunization with a versatile adenovirus-inspired multimerization platform. Mol Ther 2022; 30:1913-1925. [PMID: 35151843 PMCID: PMC8828441 DOI: 10.1016/j.ymthe.2022.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
Virus-like particles (VLPs) are highly suited platforms for protein-based vaccines. In the present work, we adapted a previously designed non-infectious adenovirus-inspired 60-mer dodecahedric VLP (ADDomer) to display a multimeric array of large antigens through a SpyTag/SpyCatcher system. To validate the platform as a potential COVID-19 vaccine approach, we decorated the newly designed VLP with the glycosylated receptor binding domain (RBD) of SARS-CoV-2. Cryoelectron microscopy structure revealed that up to 60 copies of this antigenic domain could be bound on a single ADDomer particle, with the symmetrical arrangements of a dodecahedron. Mouse immunization with the RBD decorated VLPs already showed a significant specific humoral response following prime vaccination, greatly reinforced by a single boost. Neutralization assays with SARS-CoV-2 spike pseudo-typed virus demonstrated the elicitation of strong neutralization titers, superior to those of COVID-19 convalescent patients. Notably, the presence of pre-existing immunity against the adenoviral-derived particles did not hamper the immune response against the antigen displayed on its surface. This plug and play vaccine platform represents a promising new highly versatile tool to combat emergent pathogens.
Collapse
Affiliation(s)
- Christopher Chevillard
- CNRS, Univ. Grenoble Alpes, CEA, UMR5075, Institut de Biologie Structurale, 38042 Grenoble, France
| | - Axelle Amen
- CNRS, Univ. Grenoble Alpes, CEA, UMR5075, Institut de Biologie Structurale, 38042 Grenoble, France; CHU Grenoble Alpes, 38000 Grenoble, France
| | - Solène Besson
- CNRS, Univ. Grenoble Alpes, CEA, UMR5075, Institut de Biologie Structurale, 38042 Grenoble, France
| | - Dalil Hannani
- University Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France
| | - Isabelle Bally
- CNRS, Univ. Grenoble Alpes, CEA, UMR5075, Institut de Biologie Structurale, 38042 Grenoble, France
| | - Valentin Dettling
- CNRS, Univ. Grenoble Alpes, CEA, UMR5075, Institut de Biologie Structurale, 38042 Grenoble, France
| | - Evelyne Gout
- CNRS, Univ. Grenoble Alpes, CEA, UMR5075, Institut de Biologie Structurale, 38042 Grenoble, France
| | - Christophe J Moreau
- CNRS, Univ. Grenoble Alpes, CEA, UMR5075, Institut de Biologie Structurale, 38042 Grenoble, France
| | - Marlyse Buisson
- CNRS, Univ. Grenoble Alpes, CEA, UMR5075, Institut de Biologie Structurale, 38042 Grenoble, France
| | - Salomé Gallet
- CNRS, Univ. Grenoble Alpes, CEA, UMR5075, Institut de Biologie Structurale, 38042 Grenoble, France
| | - Daphna Fenel
- CNRS, Univ. Grenoble Alpes, CEA, UMR5075, Institut de Biologie Structurale, 38042 Grenoble, France
| | - Emilie Vassal-Stermann
- CNRS, Univ. Grenoble Alpes, CEA, UMR5075, Institut de Biologie Structurale, 38042 Grenoble, France
| | - Guy Schoehn
- CNRS, Univ. Grenoble Alpes, CEA, UMR5075, Institut de Biologie Structurale, 38042 Grenoble, France
| | - Pascal Poignard
- CNRS, Univ. Grenoble Alpes, CEA, UMR5075, Institut de Biologie Structurale, 38042 Grenoble, France; CHU Grenoble Alpes, 38000 Grenoble, France; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Marie-Claire Dagher
- CNRS, Univ. Grenoble Alpes, CEA, UMR5075, Institut de Biologie Structurale, 38042 Grenoble, France
| | - Pascal Fender
- CNRS, Univ. Grenoble Alpes, CEA, UMR5075, Institut de Biologie Structurale, 38042 Grenoble, France.
| |
Collapse
|
3
|
Sakurai F, Tachibana M, Mizuguchi H. Adenovirus vector-based vaccine for infectious diseases. Drug Metab Pharmacokinet 2022; 42:100432. [PMID: 34974335 PMCID: PMC8585960 DOI: 10.1016/j.dmpk.2021.100432] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023]
Abstract
Replication-incompetent adenovirus (Ad) vectors have been widely used as gene delivery vehicles in both gene therapy studies and basic studies for gene function analysis due to their highly advantageous properties, which include high transduction efficiencies, relatively large capacities for transgenes, and high titer production. In addition, Ad vectors induce moderate levels of innate immunity and have relatively high thermostability, making them very attractive as potential vaccine vectors. Accordingly, it is anticipated that Ad vectors will be used in vaccines for the prevention of infectious diseases, including Ebola virus disease and acquired immune deficiency syndrome (AIDS). Much attention is currently focused on the potential use of an Ad vector vaccine for coronavirus disease 2019 (COVID-19). In this review, we describe the basic properties of an Ad vector, Ad vector-induced innate immunity and immune responses to Ad vector-produced transgene products. Development of novel Ad vectors which can overcome the drawbacks of conventional Ad vector vaccines and clinical application of Ad vector vaccines to several infectious diseases are also discussed.
Collapse
Affiliation(s)
- Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | - Masashi Tachibana
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan; Laboratory of Hepatocyte Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan.
| |
Collapse
|
4
|
Porto PS, Anjos D, Dábilla N, da Fonseca SG, Souza M. Immunoinformatic construction of an adenovirus-based modular vaccine platform and its application in the design of a SARS-CoV-2 vaccine. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104489. [PMID: 32758675 PMCID: PMC7833690 DOI: 10.1016/j.meegid.2020.104489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/08/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022]
Abstract
The current SARS-CoV-2 pandemic has imposed new challenges and demands for health systems, especially in the development of new vaccine strategies. Vaccines for many pathogens were developed based on the display of foreign epitopes in the variable regions of the human adenovirus (HAdV) major capsid proteins (hexon, penton and fiber). The humoral immune response against the HAdV major capsid proteins was demonstrated to play a role in the development of an immune response against the epitopes in display. Through the immunoinformatic profiling of the major capsid proteins of HAdVs from different species, we developed a modular concept that can be used in the development of vaccines based on HAdV vectors. Our data suggests that different immunomodulatory potentials can be observed in the conserved regions, present in the hexon and penton proteins, from different species. Using this modular approach, we developed a HAdV-5 based vaccine strategy for SARS-CoV-2, constructed through the display of SARS-CoV-2 epitopes indicated by our prediction analysis as immunologically relevant. The sequences of the HAdV vector major capsid proteins were also edited to enhance the IFN-gamma induction and antigen presenting cells activation. This is the first study proposing a modular HAdV platform developed to aid the design of new vaccines by inducing an immune response more suited for the epitopes in display.
Collapse
Affiliation(s)
- Pedro Soares Porto
- Laboratory of Virology and Cell Culture, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Déborah Anjos
- Laboratory of Virology and Cell Culture, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Nathânia Dábilla
- Laboratory of Virology and Cell Culture, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Simone Gonçalves da Fonseca
- Immunoregulation Laboratory, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Brazil
| | - Menira Souza
- Laboratory of Virology and Cell Culture, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
5
|
van Winkel CAJ, Moreno A, Curiel DT. Capsid-Incorporation Strategy To Display Antigens for an Alternative Adenoviral Vector Vaccine Approach. Mol Pharm 2018; 15:5446-5453. [PMID: 30359030 DOI: 10.1021/acs.molpharmaceut.8b00591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The adenovirus (Ad) is widely used as a vaccine because of its ability to induce a cellular and humoral immune response. In addition, human clinical trials have validated the safety and efficacy of Ad as a vaccine vector. The traditional approach for employing the adenovirus as vaccine is to configure the antigen genes into the expression cassette of the Ad genome. An alternative method for inducing an immune response is the "capsid-incorporation" strategy. This strategy is based upon the incorporation of proteins or peptides into the capsid proteins. This review will focus on the established uses of this approach as well as highlighting the new developments regarding the capsid-incorporation strategy.
Collapse
Affiliation(s)
- Claudia A J van Winkel
- Cancer Biology Division, Department of Radiation Oncology , Washington University School of Medicine , St. Louis , Missouri 63110 , United States.,Department of Chemical and Pharmaceutical Biology , University of Groningen , Groningen 9700 AB , The Netherlands
| | - Alberto Moreno
- Emory Vaccine Center and Yerkes National Primate Research Center , Emory University , Atlanta , Georgia 30322 , United States.,Division of Infectious Diseases, Department of Medicine , Emory University , Atlanta , Georgia 30322 , United States
| | - David T Curiel
- Cancer Biology Division, Department of Radiation Oncology , Washington University School of Medicine , St. Louis , Missouri 63110 , United States
| |
Collapse
|
6
|
Li R, Liu J, Wu S, Zai X, Li Y, Yang Q, Hou L, Xu J, Chen W. Toll-like receptor 4 signalling regulates antibody response to adenoviral vector-based vaccines by imprinting germinal centre quality. Immunology 2018; 155:251-262. [PMID: 29876918 DOI: 10.1111/imm.12957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/30/2018] [Accepted: 06/02/2018] [Indexed: 12/24/2022] Open
Abstract
Adenoviral vectors (AdV) are considered promising candidates for vaccine applications. A prominent group of Toll-like receptors (TLRs) participate in the adenovirus-induced adaptive immune response, yet there is little information regarding the role of TLR4 in AdV-induced immune responses in recent literature. We investigated the function of TLR4 in both adaptive and innate immune responses to an AdV-based anthrax vaccine. By immunizing wild-type and TLR4 knockout (TLR4-KO) mice, we revealed the requirement of TLR4 in AdV-induced innate responses. We also showed that TLR4 functions are required for germinal centre responses in immunized mice, as expression of the apoptosis-related marker Fas was down-regulated on germinal centre B cells from TLR4-KO mice. Likewise, decreased expression of inducible costimulator on follicular T helper cells was observed in immunized TLR4-KO mice. Moreover, a potent protective antigen-specific humoral immune response was mimicked using an adjuvant system containing the TLR4 agonist monophosphoryl lipid A. Overall, our findings showed that very rapid antigen-specific antibody production is correlated with the TLR4-imprinted germinal centre response to AdV-based vaccine. These results provide additional evidence for the use of the AdV and a TLR agonist to induce humoral responses. Our findings offer new insights into rational vaccine design.
Collapse
Affiliation(s)
- Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ju Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China.,Beijing Institute for Drug and Instrument Quality Control, Beijing, China
| | - Shipo Wu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Qiaoling Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Hou
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|