Ando M, Kondo T, Tomisato W, Ito M, Shichino S, Srirat T, Mise-Omata S, Nakagawara K, Yoshimura A. Rejuvenating Effector/Exhausted CAR T Cells to Stem Cell Memory-Like CAR T Cells By Resting Them in the Presence of CXCL12 and the NOTCH Ligand.
CANCER RESEARCH COMMUNICATIONS 2021;
1:41-55. [PMID:
36860911 PMCID:
PMC9973402 DOI:
10.1158/2767-9764.crc-21-0034]
[Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 06/18/2023]
Abstract
UNLABELLED
T cells with a stem cell memory (TSCM) phenotype provide long-term and potent antitumor effects for T-cell transfer therapies. Although various methods for the induction of TSCM-like cells in vitro have been reported, few methods generate TSCM-like cells from effector/exhausted T cells. We have reported that coculture with the Notch ligand-expressing OP9 stromal cells induces TSCM-like (iTSCM) cells. Here, we established a feeder-free culture system to improve iTSCM cell generation from expanded chimeric antigen receptor (CAR)-expressing T cells; culturing CAR T cells in the presence of IL7, CXCL12, IGF-I, and the Notch ligand, hDLL1. Feeder-free CAR-iTSCM cells showed the expression of cell surface markers and genes similar to that of OP9-hDLL1 feeder cell-induced CAR-iTSCM cells, including the elevated expression of SCM-associated genes, TCF7, LEF1, and BCL6, and reduced expression of exhaustion-associated genes like LAG3, TOX, and NR4A1. Feeder-free CAR-iTSCM cells showed higher proliferative capacity depending on oxidative phosphorylation and exhibited higher IL2 production and stronger antitumor activity in vivo than feeder cell-induced CAR-iTSCM cells. Our feeder-free culture system represents a way to rejuvenate effector/exhausted CAR T cells to SCM-like CAR T cells.
SIGNIFICANCE
Resting CAR T cells with our defined factors reprograms exhausted state to SCM-like state and enables development of improved CAR T-cell therapy.
Collapse