1
|
Wojtukiewicz MZ, Mysliwiec M, Tokajuk A, Kruszewska J, Politynska B, Jamroze A, Wojtukiewicz AM, Tang DG, Honn KV. Tissue factor pathway inhibitor-2 (TFPI-2)-an underappreciated partaker in cancer and metastasis. Cancer Metastasis Rev 2024; 43:1185-1204. [PMID: 39153052 PMCID: PMC11554837 DOI: 10.1007/s10555-024-10205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
The coagulation system is known to play an important role in cancer development and metastasis, but the precise mechanisms by which it does so remain incompletely understood. With this in mind, we provide an updated overview of the effects of TFPI-2, a protease inhibitor, on cancer development and metastasis. TFPI-2 interacts with the thrombin cascade and also employs other mechanisms to suppress cancer growth and dissemination, which include extracellular matrix stabilization, promotion of caspase-mediated cell apoptosis, inhibition of angiogenesis and transduction of intracellular signals. Down-regulation of TFPI-2 expression is well documented in numerous types of neoplasms, mainly via promoter methylation. However, the exact role of TFPI-2 in cancer progression and possible approaches to up-regulate TFPI-2 expression warrant further studies. Strategies to reactivate TFPI-2 may represent a promising direction for future anticancer studies and therapy development.
Collapse
Affiliation(s)
- Marek Z Wojtukiewicz
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa, 15-027, Bialystok, Poland.
- Department of Clinical Oncology, Comprehensive Cancer Center of Bialystok, 12 Ogrodowa, 15-027, Bialystok, Poland.
| | - Marta Mysliwiec
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa, 15-027, Bialystok, Poland
| | - Anna Tokajuk
- Department of Clinical Oncology, Comprehensive Cancer Center of Bialystok, 12 Ogrodowa, 15-027, Bialystok, Poland
| | - Joanna Kruszewska
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa, 15-027, Bialystok, Poland
| | - Barbara Politynska
- Department of Psychology and Philosophy, Medical University of Bialystok, 37 Szpitalna, 15-295, Bialystok, Poland
- Robinson College, University of Cambridge, Grange Road, Cambridge, CB3 9AN, UK
| | - Anmbreen Jamroze
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Anna M Wojtukiewicz
- Department of Psychology and Philosophy, Medical University of Bialystok, 37 Szpitalna, 15-295, Bialystok, Poland
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Kenneth V Honn
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Wayne State University, 540 East Canfield Avenue, Detroit, MI, 48201, USA
- Karmanos Cancer Institute, 4100 John R St, Detroit, MI, 48201, USA
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| |
Collapse
|
2
|
Lehner GF, Tobiasch AK, Perschinka F, Mayerhöfer T, Waditzer M, Haller V, Zassler B, Maier S, Ulmer H, Joannidis M. Associations of tissue factor and tissue factor pathway inhibitor with organ dysfunctions in septic shock. Sci Rep 2024; 14:14468. [PMID: 38914630 PMCID: PMC11196691 DOI: 10.1038/s41598-024-65262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
Coagulopathy, microvascular alterations and concomitant organ dysfunctions are hallmarks of sepsis. Attempts to attenuate coagulation activation with an inhibitor of tissue factor (TF), i.e. tissue factor pathway inhibitor (TFPI), revealed no survival benefit in a heterogenous group of sepsis patients, but a potential survival benefit in patients with an international normalized ratio (INR) < 1.2. Since an increased TF/TFPI ratio determines the procoagulant activity specifically on microvascular endothelial cells in vitro, we investigated whether TF/TFPI ratio in blood is associated with INR alterations, organ dysfunctions, disseminated intravascular coagulation (DIC) and outcome in septic shock. Twenty-nine healthy controls (HC) and 89 patients with septic shock admitted to a tertiary ICU were analyzed. TF and TFPI in blood was analyzed and related to organ dysfunctions, DIC and mortality. Patients with septic shock had 1.6-fold higher levels of TF and 2.9-fold higher levels of TFPI than HC. TF/TFPI ratio was lower in septic shock compared to HC (0.003 (0.002-0.005) vs. 0.006 (0.005-0.008), p < 0.001). Non-survivors had higher TFPI levels compared to survivors (43038 (29354-54023) vs. 28041 (21675-46582) pg/ml, p = 0.011). High TFPI levels were associated with acute kidney injury, liver dysfunction, DIC and disease severity. There was a positive association between TF/TFPI ratio and troponin T (b = 0.531 (0.309-0.754), p < 0.001). A high TF/TFPI ratio is exclusively associated with myocardial injury but not with other organ dysfunctions. Systemic TFPI levels seem to reflect disease severity. These findings point towards a pathophysiologic role of TF/TFPI in sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Georg Franz Lehner
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Anna Katharina Tobiasch
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Fabian Perschinka
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Timo Mayerhöfer
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Markus Waditzer
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Viktoria Haller
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Birgit Zassler
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sarah Maier
- Institute of Medical Statistics and Informatics, Medical University Innsbruck, Schöpfstrasse 41/1, 6020, Innsbruck, Austria
| | - Hanno Ulmer
- Institute of Medical Statistics and Informatics, Medical University Innsbruck, Schöpfstrasse 41/1, 6020, Innsbruck, Austria
| | - Michael Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
3
|
Qiao X, Yin J, Zheng Z, Li L, Feng X. Endothelial cell dynamics in sepsis-induced acute lung injury and acute respiratory distress syndrome: pathogenesis and therapeutic implications. Cell Commun Signal 2024; 22:241. [PMID: 38664775 PMCID: PMC11046830 DOI: 10.1186/s12964-024-01620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.
Collapse
Affiliation(s)
- Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Liangge Li
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.
- School of Clinical and Basic Medical Sciences, Shandong First Medical University& Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
4
|
YUSTINASARI LR, KURATOMI M, KAGAWA S, GONDO A, ARAMAKI N, IMAI H, KUSAKABE KT. Specific expression and blood kinetics for relaxin 2, lipocalin 2, and tissue factor pathway inhibitor 2 at the canine placenta and pregnant bloods. J Vet Med Sci 2024; 86:77-86. [PMID: 38057091 PMCID: PMC10849861 DOI: 10.1292/jvms.23-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
In general, humoral factors released from the placenta influence pregnancy progression, but the involvement of the canine placenta is often unidentified. We investigated specific genes in canine placentas and analyzed the blood dynamics of the translated proteins. Furthermore, RNAs are known to be released from placentas embedding in exosomes, a type of extracellular vesicles. Here, the presence of cell-free RNAs in pregnant serums was also confirmed. RNA specimens were purified from the normal healthy dog placentas and applied to RNA-Seq analysis. Expressions of frequent genes were confirmed by RT-PCR using placentas from other individuals and breeds. Relaxin (RLN) 2, lipocalin (LCN) 2, and tissue factor pathway inhibitor (TFPI) 2 were selected as high-expressed and placenta-specific genes. By western blot, the three factors were clearly detected in the pregnant serums. Quantitative analysis revealed that the amount of RLN2 increased significantly from non-pregnancy to day 41 of pregnancy. Regarding LCN2 and TFPI2, the protein serum levels elevated during pregnancy, but the statistical differences were not detected. Exosomes were found in all pregnant serums; however, the percentage was less than 6% in total extracellular vesicles. The cell-free RNA related to RLN2 was detected, but no elevation was confirmed during pregnancy. We found specific genes in the canine placenta and the transition of their translated protein into the blood. These factors may become useful tools for research on canine pregnancy and monitoring of reproductive management. Exosomes and cell-free RNA could not be found to be valid in canine reproduction.
Collapse
Affiliation(s)
- Lita Rakhma YUSTINASARI
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Maria KURATOMI
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Seizaburo KAGAWA
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ai GONDO
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Nobuaki ARAMAKI
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroyuki IMAI
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ken Takeshi KUSAKABE
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
5
|
Escobar‐Salom M, Torrens G, Jordana‐Lluch E, Oliver A, Juan C. Mammals' humoral immune proteins and peptides targeting the bacterial envelope: from natural protection to therapeutic applications against multidrug‐resistant
Gram
‐negatives. Biol Rev Camb Philos Soc 2022; 97:1005-1037. [PMID: 35043558 PMCID: PMC9304279 DOI: 10.1111/brv.12830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Mammalian innate immunity employs several humoral ‘weapons’ that target the bacterial envelope. The threats posed by the multidrug‐resistant ‘ESKAPE’ Gram‐negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are forcing researchers to explore new therapeutic options, including the use of these immune elements. Here we review bacterial envelope‐targeting (peptidoglycan and/or membrane‐targeting) proteins/peptides of the mammalian immune system that are most likely to have therapeutic applications. Firstly we discuss their general features and protective activity against ESKAPE Gram‐negatives in the host. We then gather, integrate, and discuss recent research on experimental therapeutics harnessing their bactericidal power, based on their exogenous administration and also on the discovery of bacterial and/or host targets that improve the performance of this endogenous immunity, as a novel therapeutic concept. We identify weak points and knowledge gaps in current research in this field and suggest areas for future work to obtain successful envelope‐targeting therapeutic options to tackle the challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- María Escobar‐Salom
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Gabriel Torrens
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Elena Jordana‐Lluch
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Antonio Oliver
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Carlos Juan
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| |
Collapse
|
6
|
Zheng L, Huang J, Su Y, Wang F, Kong H, Xin H. Overexpression of tissue factor pathway inhibitor 2 attenuates trophoblast proliferation and invasion in preeclampsia. Hum Cell 2020; 33:512-520. [PMID: 32130677 DOI: 10.1007/s13577-020-00322-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/12/2020] [Indexed: 12/18/2022]
Abstract
Pre-eclampsia (PE) is a disorder of pregnancy characterized by proteinuria and high blood pressure, affecting 2-8% of pregnancies worldwide. Previous studies have shown that PE is closely associated with trophoblast cell dysfunction. Here, we investigated the role of tissue factor pathway inhibitor-2 (TFPI-2) in regulating the biological processes of trophoblast cells. The TFPI-2 levels in plasma samples and placental tissues were tested by ELISA, immunohistochemistry, qRT-PCR, and western blot. HTR8/Svneo cell line was used to simulate the primary trophoblast cells and H/R culture was applied to mimic the oxidative stress state of PE. MTT assay, Annexin V/propidium iodide (PI) apoptosis assay, and transwell assay were used to determine the cell proliferation, apoptosis, and invasion. The expression levels of matrix metalloproteinases (MMPs) were evaluated by western blot. The expression of TFPI-2 was remarkably up-regulated in both the serum and placenta of PE patients. Hypoxia/reoxygenation increased the expression of TFPI-2 in HTR-8/SVneo cell line. TFPI-2 promoted that cell proliferation and inhibited the cell apoptosis of HTR8/SVneo cells in H/R condition. In addition, downregulation of TFPI-2 increased the cell invasion and the expression of MMP2 and MMP9. This study reveals that TFPI-2 plays a crucial role in monitoring the biological function of trophoblast cells, which might provide theoretical basis and therapeutic targets for the treatment of PE.
Collapse
Affiliation(s)
- Lili Zheng
- Department of Obstetrics, The Second Hospital of Hebei Medical University, No. 215 Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Jing Huang
- Department of Obstetrics, The Second Hospital of Hebei Medical University, No. 215 Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Yuan Su
- Department of Obstetrics, The Second Hospital of Hebei Medical University, No. 215 Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Fang Wang
- Department of Obstetrics, The Second Hospital of Hebei Medical University, No. 215 Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Hongfang Kong
- Department of Obstetrics, The Second Hospital of Hebei Medical University, No. 215 Heping Xi Road, Shijiazhuang, 050000, Hebei, China
| | - Hong Xin
- Department of Obstetrics, The Second Hospital of Hebei Medical University, No. 215 Heping Xi Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|