1
|
Taira H, Li L, Koyama A, Toyoshima R, Yamamoto T, Ito Y, Sugimoto E, Mizuno Y, Awaji K, Sato S, Shibata S. EGF-Induced Macropinocytosis Promotes NAV1-Dependent Internalization of Occludin in Keratinocytes. FASEB J 2025; 39:e70564. [PMID: 40266031 PMCID: PMC12017258 DOI: 10.1096/fj.202402876r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/05/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Epidermal keratinocytes form the outermost layer of the skin and serve as a pivotal barrier against external insults. This barrier, however, can be compromised in conditions such as atopic dermatitis (AD), where both genetic and environmental factors contribute to its disruption. Recent studies have indicated that macropinocytosis, a non-selective endocytic process, is involved in the internalization of barrier proteins. In this study, we explored the role of macropinocytosis in differentiated keratinocytes and its potential impact on skin barrier integrity in AD. Our results demonstrated that epidermal growth factor (EGF), but not the type 2 cytokines IL-4 and IL-13, significantly promoted macropinocytosis in differentiated HaCaT keratinocytes. EGF stimulation increased the uptake of 70 kDa dextran and induced the internalization of occludin, a component of tight junction proteins. Furthermore, enhanced macropinocytosis was observed in the epidermis of a mouse model of AD, accompanied by elevated EGF expression in the skin, indicating that the AD skin microenvironment may drive this process. NAV1 was identified as a critical regulator of EGF-induced macropinocytosis, as its knockdown significantly impaired this process. Transcriptome analysis of NAV1-knockdown cells further revealed changes in the expression of Rho family GTPases, including CDC42 and MMP14, suggesting that NAV1 modulates macropinocytosis through Rho-dependent pathways. These findings provide new insights into the regulation of macropinocytosis in keratinocytes and its potential contribution to the barrier dysfunction observed in AD.
Collapse
Affiliation(s)
- Haruka Taira
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Lixin Li
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Asumi Koyama
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Rino Toyoshima
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Toyoki Yamamoto
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yukiko Ito
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Eiki Sugimoto
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Yuka Mizuno
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kentaro Awaji
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shinichi Sato
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Sayaka Shibata
- Department of Dermatology, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
2
|
Liang G, Zhao C, Wei Q, Feng S, Wang Y. Single cell transcriptome profiling reveals pathogenesis of bullous pemphigoid. Commun Biol 2025; 8:203. [PMID: 39922909 PMCID: PMC11807148 DOI: 10.1038/s42003-025-07629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
Bullous pemphigoid (BP) triggers profound functional changes in both immune and non-immune cells in the skin and circulation, though the underlying mechanisms remain unclear. In this study, we conduct single-cell transcriptome analysis of lesional and non-lesional skin, as well as blood samples from BP patients. In lesional skin, non-immune cells upregulate pathways related to metabolism, wound healing, immune activation, and cell migration. LAMP3+DCs from cDC2 show stronger pro-inflammatory signatures than those from cDC1, and VEGFA+ mast cells, crucial for BP progression, are predominantly in lesional skin. As BP patients transition from active to remission stages, blood B cell function shifts from differentiation and memory formation to increased type 1 interferon signaling and reduced IL-4 response. Blood CX3CR1+ ZNF683+ and LAG3+ exhausted T cells exhibit the highest TCR expansion among clones shared with skin CD8+T cells, suggesting their role in fueling skin CD8+T cell clonal expansion. Clinical BP severity correlates positively with blood NK cell IFN-γ production and negatively with amphiregulin (AREG) production. NK cell-derived AREG mitigates IFN-γ-induced keratinocyte apoptosis, suggesting a crucial balance between AREG and IFN-γ in BP progression. These findings highlight functional shifts in BP pathology and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Guirong Liang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Chenjing Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qin Wei
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Suying Feng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Yetao Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
3
|
Cho YT, Lee CH, Lee JY, Chu CY. Targeting antibody-mediated complement-independent mechanism in bullous pemphigoid with diacerein. J Dermatol Sci 2024; 114:44-51. [PMID: 38508975 DOI: 10.1016/j.jdermsci.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Bullous pemphigoid (BP) is an antibody-mediated blistering disease predominantly affecting the elderly. The pathogenesis involves both complement-dependent and complement-independent mechanisms. The therapeutic potential of targeting complement-independent mechanism has not yet been determined. The mainstay of treatment, corticosteroid, has many side effects, indicating the needs of better treatments. OBJECTIVE We tempted to establish an in vitro model of BP which resembles complement-independent mechanism and to examine the therapeutic potential of a novel anti-inflammatory agent, diacerein. METHODS Cultured HaCaT cells were treated with purified antibodies from BP patients, with or without diacerein to measure the cell interface presence of BP180, protein kinase C, and the production of proinflammatory cytokines. An open-label, randomized, phase 2 trial was conducted to compare topical diacerein and clobetasol ointments in patients with mild-to-moderate BP (NCT03286582). RESULTS The reduced presentation of BP180 at cell interface after treating with BP autoantibodies was noticed in immunofluorescence and western blotting studies. The phenomenon was restored by diacerein. Diacerein also reduced the autoantibody-induced increase of pro-inflammatory cytokines. Reciprocal changes of BP180 and protein kinase C at the cell interface were found after treating with BP autoantibodies. This phenomenon was also reversed by diacerein in a dose-dependent manner. The phase 2 trial showed that topical diacerein reduced the clinical symptoms which were comparable to those of topical clobetasol. CONCLUSION Diacerein inhibited BP autoantibody-induced reduction of BP180 and production of proinflammatory cytokines in vitro and showed therapeutic potential in patients with BP. It is a novel drug worthy of further investigations.
Collapse
Affiliation(s)
- Yung-Tsu Cho
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | | | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
4
|
Yan T, Zhang Z. Adaptive and innate immune pathogenesis of bullous pemphigoid: A review. Front Immunol 2023; 14:1144429. [PMID: 36993969 PMCID: PMC10041874 DOI: 10.3389/fimmu.2023.1144429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease that primarily affects elderly individuals. The presentation of BP is heterogeneous, typically manifesting as microscopic subepidermal separation with a mixed inflammatory infiltrate. The mechanism of pemphigoid development is unclear. B cells play a major role in pathogenic autoantibody production, and T cells, type II inflammatory cytokines, eosinophils, mast cells, neutrophils, and keratinocytes are also implicated in the pathogenesis of BP. Here, we review the roles of and crosstalk between innate and adaptive immune cells in BP.
Collapse
Affiliation(s)
- Tianmeng Yan
- Department of Dermatology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Zhenying Zhang
- Department of Dermatology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhenying Zhang,
| |
Collapse
|
5
|
Genetic polymorphism of glutathione S-transferases (GSTM1, GSTT1, and GSTP1) in patients with bullous pemphigoid in a Polish population. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Introduction. Bullous pemphigoid (BP) is one of the most common bullous diseases with an autoimmune background. The etiology and pathogenesis of BP are believed to be influenced not only by environmental, genetic, and immunological factors as well as by oxidative stress. BP is observed more frequently in elderly patients. Additionally, more potent oxidative stress is observed just in old age. Glutathione S-transferases (GSTs) play key roles in the detoxification of xenobiotics, metabolism of endogenous substrates, and the defense against oxidative stress. The present study examines whether polymorphism of genes encoding three selected GSTs (GSTM1, GSTT1, and GSTP1) might be associated with a higher risk for BP.
Materials and methods. The study involved 71 patients with BP and 100 healthy volunteers from a Polish population. The presence of the deletion type polymorphism for GSTM1 and GSTT1 was confirmed by multiplex PCR. The Ile105Val GSTP1 polymorphism was analyzed by PCR-RFLP.
Results. It was observed that the combination of GSTM1 null/GSTT1 null/GSTP1 Ile/Val, Val/Val genotypes occurred more frequently in patients with BP (8.5%) than in controls (4.0%). The odds ratio for carriers of GSTM1 null/GSTT1 null/ GSTP1 Ile/Val, Val/Val genotypes was 2.22 (95% CI 0.60–8.16; p = 0.3727), but was not statistically significant.
Conclusions. The combination of GSTM1 null, GSTT1 null, GSTP1 Ile/Val, Val/Val genotypes might be related to a greater risk of BP in a Polish population. However, future studies including more individuals are required to confirm this.
Collapse
|
6
|
Rehman A, Huang Y, Wan H. Evolving Mechanisms in the Pathophysiology of Pemphigus Vulgaris: A Review Emphasizing the Role of Desmoglein 3 in Regulating p53 and the Yes-Associated Protein. Life (Basel) 2021; 11:life11070621. [PMID: 34206820 PMCID: PMC8303937 DOI: 10.3390/life11070621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/28/2023] Open
Abstract
The immunobullous condition Pemphigus Vulgaris (PV) is caused by autoantibodies targeting the adhesion proteins of desmosomes, leading to blistering in the skin and mucosal membrane. There is still no cure to the disease apart from the use of corticosteroids and immunosuppressive agents. Despite numerous investigations, the pathological mechanisms of PV are still incompletely understood, though the etiology is thought to be multifactorial. Thus, further understanding of the molecular basis underlying this disease process is vital to develop targeted therapies. Ample studies have highlighted the role of Desmoglein-3 (DSG3) in the initiation of disease as DSG3 serves as a primary target of PV autoantibodies. DSG3 is a pivotal player in mediating outside-in signaling involved in cell junction remodeling, cell proliferation, differentiation, migration or apoptosis, thus validating its biological function in tissue integrity and homeostasis beyond desmosome adhesion. Recent studies have uncovered new activities of DSG3 in regulating p53 and the yes-associated protein (YAP), with the evidence of dysregulation of these pathways demonstrated in PV. The purpose of this review is to summarize the earlier and recent advances highlighting our recent findings related to PV pathogenesis that may pave the way for future research to develop novel specific therapies in curing this disease.
Collapse
Affiliation(s)
- Ambreen Rehman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (A.R.); (Y.H.)
- Department of Oral Diagnosis and Medicine, Dr Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Yunying Huang
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (A.R.); (Y.H.)
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London, School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (A.R.); (Y.H.)
- Correspondence:
| |
Collapse
|
7
|
Szilveszter KP, Németh T, Mócsai A. Tyrosine Kinases in Autoimmune and Inflammatory Skin Diseases. Front Immunol 2019; 10:1862. [PMID: 31447854 PMCID: PMC6697022 DOI: 10.3389/fimmu.2019.01862] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 12/30/2022] Open
Abstract
Tyrosine kinases relay signals from diverse leukocyte antigen receptors, innate immune receptors, and cytokine receptors, and therefore mediate the recruitment and activation of various leukocyte populations. Non-receptor tyrosine kinases of the Jak, Src, Syk, and Btk families play major roles in various immune-mediated disorders, and small-molecule tyrosine kinase inhibitors are emerging novel therapeutics in a number of those diseases. Autoimmune and inflammatory skin diseases represent a broad spectrum of immune-mediated diseases. Genetic and pharmacological studies in humans and mice support the role of tyrosine kinases in several inflammatory skin diseases. Atopic dermatitis and psoriasis are characterized by an inflammatory microenvironment which activates cytokine receptors coupled to the Jak-Stat signaling pathway. Jak kinases are also implicated in alopecia areata and vitiligo, skin disorders mediated by cytotoxic T lymphocytes. Genetic studies indicate a critical role for Src-family kinases and Syk in animal models of autoantibody-mediated blistering skin diseases. Here, we review the various tyrosine kinase signaling pathways and their role in various autoimmune and inflammatory skin diseases. Special emphasis will be placed on identification of potential therapeutic targets, as well as on ongoing preclinical and clinical studies for the treatment of inflammatory skin diseases by small-molecule tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Kata P Szilveszter
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| |
Collapse
|
8
|
Genovese G, Di Zenzo G, Cozzani E, Berti E, Cugno M, Marzano AV. New Insights Into the Pathogenesis of Bullous Pemphigoid: 2019 Update. Front Immunol 2019; 10:1506. [PMID: 31312206 PMCID: PMC6614376 DOI: 10.3389/fimmu.2019.01506] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
There are several lines of evidence indicating that the physiopathological bases of bullous pemphigoid (BP), the most common subepidermal autoimmune bullous disease, are hallmarked by the production of autoantibodies directed against the hemidesmosomal anchoring proteins BP180 and BP230. In contrast to the robustness of the latter assumption, the multifaceted complexity of upstream and downstream mechanisms implied in the pathogenesis of BP remains an area of intense speculation. So far, an imbalance between T regulatory cells and autoreactive T helper (Th) cells has been regarded as the main pathogenic factor triggering the autoimmune response in BP patients. However, the contributory role of signaling pathways fostering the B cell stimulation, such as Toll-like receptor activation, as well as that of ancillary inflammatory mechanisms responsible for blister formation, such as Th17 axis stimulation and the activation of the coagulation cascade, are still a matter of debate. In the same way, the pathomechanisms implied in the loss of dermal-epidermal adhesion secondary to autoantibodies binding are not fully understood. Herein, we review in detail the current concepts and controversies on the complex pathogenesis of BP, shedding light on the most recent theories emerging from the literature.
Collapse
Affiliation(s)
- Giovanni Genovese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Di Zenzo
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata (IDI) IRCCS, Rome, Italy
| | - Emanuele Cozzani
- DISSAL Section of Dermatology, Università degli Studi di Genova, Genoa, Italy
| | - Emilio Berti
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Massimo Cugno
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Internal Medicine Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Physiopathology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|