1
|
Byun MJ, Seo HS, Lee J, Ban K, Oh S, Lee YY, Lim J, Lee NK, Wang CPJ, Kim M, Han JH, Park J, Paik T, Park HH, Park TE, Park W, Kim SN, Park DH, Park CG. Biofunctional Inorganic Layered Double Hydroxide Nanohybrid Enhances Immunotherapeutic Effect on Atopic Dermatitis Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304862. [PMID: 38050931 DOI: 10.1002/smll.202304862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/08/2023] [Indexed: 12/07/2023]
Abstract
Atopic dermatitis (AD) is a widespread, recurrent, and chronic inflammatory skin condition that imposes a major burden on patients. Conventional treatments, such as corticosteroids, are associated with various side effects, underscoring the need for innovative therapeutic approaches. In this study, the possibility of using indole-3-acetic acid-loaded layered double hydroxides (IAA-LDHs) is evaluated as a novel treatment for AD. IAA is an auxin-class plant hormone with antioxidant and anti-inflammatory effects. Following the synthesis of IAA-LDH nanohybrids, their ability to induce M2-like macrophage polarization in macrophages obtained from mouse bone marrow is assessed. The antioxidant activity of IAA-LDH is quantified by assessing the decrease in intracellular reactive oxygen species levels. The anti-inflammatory and anti-atopic characteristics of IAA-LDH are evaluated in a mouse model of AD by examining the cutaneous tissues, immunological organs, and cells. The findings suggest that IAA-LDH has great therapeutic potential as a candidate for AD treatment based on its in vitro and in vivo modulation of AD immunology, enhancement of macrophage polarization, and antioxidant activity. This inorganic drug delivery technology represents a promising new avenue for the development of safe and effective AD treatments.
Collapse
Affiliation(s)
- Min Ji Byun
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Hee Seung Seo
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Joonghak Lee
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kitae Ban
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Serim Oh
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Yun Young Lee
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Na Kyeong Lee
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Chi-Pin James Wang
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Minjeong Kim
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jun-Hyeok Han
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai'i at Manoa, Honolulu, Hawaii, 96813, USA
| | - Taejong Paik
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Se-Na Kim
- Research and Development Center, MediArk Inc., Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Dae-Hwan Park
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Industrial Cosmetic Science, College of Bio-Health University System, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- Department of Synchrotron Radiation Science and Technology, College of Bio-Health University System, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
- LANG SCIENCE Inc, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
2
|
Ugolkov Y, Nikitich A, Leon C, Helmlinger G, Peskov K, Sokolov V, Volkova A. Mathematical modeling in autoimmune diseases: from theory to clinical application. Front Immunol 2024; 15:1371620. [PMID: 38550585 PMCID: PMC10973044 DOI: 10.3389/fimmu.2024.1371620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
The research & development (R&D) of novel therapeutic agents for the treatment of autoimmune diseases is challenged by highly complex pathogenesis and multiple etiologies of these conditions. The number of targeted therapies available on the market is limited, whereas the prevalence of autoimmune conditions in the global population continues to rise. Mathematical modeling of biological systems is an essential tool which may be applied in support of decision-making across R&D drug programs to improve the probability of success in the development of novel medicines. Over the past decades, multiple models of autoimmune diseases have been developed. Models differ in the spectra of quantitative data used in their development and mathematical methods, as well as in the level of "mechanistic granularity" chosen to describe the underlying biology. Yet, all models strive towards the same goal: to quantitatively describe various aspects of the immune response. The aim of this review was to conduct a systematic review and analysis of mathematical models of autoimmune diseases focused on the mechanistic description of the immune system, to consolidate existing quantitative knowledge on autoimmune processes, and to outline potential directions of interest for future model-based analyses. Following a systematic literature review, 38 models describing the onset, progression, and/or the effect of treatment in 13 systemic and organ-specific autoimmune conditions were identified, most models developed for inflammatory bowel disease, multiple sclerosis, and lupus (5 models each). ≥70% of the models were developed as nonlinear systems of ordinary differential equations, others - as partial differential equations, integro-differential equations, Boolean networks, or probabilistic models. Despite covering a relatively wide range of diseases, most models described the same components of the immune system, such as T-cell response, cytokine influence, or the involvement of macrophages in autoimmune processes. All models were thoroughly analyzed with an emphasis on assumptions, limitations, and their potential applications in the development of novel medicines.
Collapse
Affiliation(s)
- Yaroslav Ugolkov
- Research Center of Model-Informed Drug Development, Ivan Mikhaylovich (I.M.) Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
| | - Antonina Nikitich
- Research Center of Model-Informed Drug Development, Ivan Mikhaylovich (I.M.) Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
| | - Cristina Leon
- Modeling and Simulation Decisions FZ - LLC, Dubai, United Arab Emirates
| | | | - Kirill Peskov
- Research Center of Model-Informed Drug Development, Ivan Mikhaylovich (I.M.) Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
- Modeling and Simulation Decisions FZ - LLC, Dubai, United Arab Emirates
- Sirius University of Science and Technology, Sirius, Russia
| | - Victor Sokolov
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
- Modeling and Simulation Decisions FZ - LLC, Dubai, United Arab Emirates
| | - Alina Volkova
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (RAS), Moscow, Russia
- Modeling and Simulation Decisions FZ - LLC, Dubai, United Arab Emirates
| |
Collapse
|
3
|
Sitko K, Starke M, Tukaj S. Heat shock protein 90 (Hsp90) inhibitor STA-9090 (Ganetespib) ameliorates inflammation in a mouse model of atopic dermatitis. Cell Stress Chaperones 2023; 28:935-942. [PMID: 37851180 PMCID: PMC10746637 DOI: 10.1007/s12192-023-01387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Molecular chaperones belonging to the heat shock protein 90 (Hsp90) family are implicated in inflammatory processes and described as potential novel therapeutic targets in autoimmune/inflammatory skin diseases. While the pathological role of circulating Hsp90 has been recently proposed in patients with atopic dermatitis (AD), a chronic inflammatory skin disease characterized by intense itching and recurrent skin lesions, studies aimed at investigating the role of Hsp90 as a potential target of AD therapy have not yet been conducted. Here, the effects of the Hsp90 blocker STA-9090 (Ganetespib) applied systemically or topically were determined in an experimental mouse model of dinitrochlorobenzene (DNCB)-induced AD. Intraperitoneal administration of STA-9090 ameliorated clinical disease severity, histological epidermal thickness, and dermal leukocyte infiltration in AD mice which was associated with reducing the scratching behavior in DNCB-treated animals. Additionally, topically applied STA-9090 led to lowered disease activity in AD mice, reduced serum levels of IgE, and up-regulated filaggrin expression in lesional skin samples. Our observations suggest that Hsp90 may be a promising therapeutic target in atopic dermatitis and potentially other inflammatory or autoimmune dermatoses.
Collapse
Affiliation(s)
- Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Starke
- Department of Plant Cytology and Embryology Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
4
|
Haertlé J, Kienlin P, Begemann G, Werfel T, Roesner LM. Inhibition of IL-17 ameliorates keratinocyte-borne cytokine responses in an in vitro model for house-dust-mite triggered atopic dermatitis. Sci Rep 2023; 13:16628. [PMID: 37789035 PMCID: PMC10547677 DOI: 10.1038/s41598-023-42595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
A subgroup of patients suffering from atopic dermatitis (AD) does not respond to biologics therapy targeting the key players of type-2 inflammation, and it is an ongoing discussion whether skin-infiltrating Th17 cells may underlie this phenomenon. This study aimed to investigate the potential of allergen-induced, immune-cell derived IL-17 on the induction of inflammatory processes in keratinocytes. Peripheral blood mononuclear cells derived from respectively sensitized AD patients were stimulated with house dust mite (HDM) extract and cell culture supernatants were applied subsequently in absence or presence of secukinumab to primary human keratinocytes. Hereby we confirm that the immune response of sensitized AD patients to HDM contains aside from type-2 cytokines significant amounts of IL-17. Blocking IL-17 efficiently reduced the stimulation-induced changes in keratinocyte gene expression. IL-17-dependent transcriptional changes included increased expression of the cytokines IL-20 and IL-24 as well as Suppressor of Cytokine Siganling 3 (SOCS3), a negative feedback-regulator of the STAT3/IL-17/IL-24 immune response. We conclude that the immune response to HDM can induce pro-inflammatory cytokines from keratinocytes in AD, which in part is mediated via IL-17. Targeting IL-17 may turn out to be a reasonable alternative therapy in a subgroup of patients with moderate to severe AD and HDM sensitization.
Collapse
Affiliation(s)
- Juliane Haertlé
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Petra Kienlin
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Gabriele Begemann
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Lennart M Roesner
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
5
|
Schäbitz A, Hillig C, Mubarak M, Jargosch M, Farnoud A, Scala E, Kurzen N, Pilz AC, Bhalla N, Thomas J, Stahle M, Biedermann T, Schmidt-Weber CB, Theis F, Garzorz-Stark N, Eyerich K, Menden MP, Eyerich S. Spatial transcriptomics landscape of lesions from non-communicable inflammatory skin diseases. Nat Commun 2022; 13:7729. [PMID: 36513651 PMCID: PMC9747967 DOI: 10.1038/s41467-022-35319-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Abundant heterogeneous immune cells infiltrate lesions in chronic inflammatory diseases and characterization of these cells is needed to distinguish disease-promoting from bystander immune cells. Here, we investigate the landscape of non-communicable inflammatory skin diseases (ncISD) by spatial transcriptomics resulting in a large repository of 62,000 spatially defined human cutaneous transcriptomes from 31 patients. Despite the expected immune cell infiltration, we observe rather low numbers of pathogenic disease promoting cytokine transcripts (IFNG, IL13 and IL17A), i.e. >125 times less compared to the mean expression of all other genes over lesional skin sections. Nevertheless, cytokine expression is limited to lesional skin and presented in a disease-specific pattern. Leveraging a density-based spatial clustering method, we identify specific responder gene signatures in direct proximity of cytokines, and confirm that detected cytokine transcripts initiate amplification cascades of up to thousands of specific responder transcripts forming localized epidermal clusters. Thus, within the abundant and heterogeneous infiltrates of ncISD, only a low number of cytokine transcripts and their translated proteins promote disease by initiating an inflammatory amplification cascade in their local microenvironment.
Collapse
Affiliation(s)
- A Schäbitz
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - C Hillig
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - M Mubarak
- Center for Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Biedersteinerstrasse 29, 80802, Munich, Germany
| | - M Jargosch
- Center for Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Biedersteinerstrasse 29, 80802, Munich, Germany
- Department of Dermatology and Allergy, Technical University of Munich, Biedersteinerstrasse 29, 80802, Munich, Germany
| | - A Farnoud
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - E Scala
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology and Venerology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - N Kurzen
- Center for Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Biedersteinerstrasse 29, 80802, Munich, Germany
| | - A C Pilz
- Department of Dermatology and Allergy, Technical University of Munich, Biedersteinerstrasse 29, 80802, Munich, Germany
- Department of Dermatology and Venerology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - N Bhalla
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - J Thomas
- Center for Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Biedersteinerstrasse 29, 80802, Munich, Germany
| | - M Stahle
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - T Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, Biedersteinerstrasse 29, 80802, Munich, Germany
| | - C B Schmidt-Weber
- Center for Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Biedersteinerstrasse 29, 80802, Munich, Germany
| | - F Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - N Garzorz-Stark
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology and Allergy, Technical University of Munich, Biedersteinerstrasse 29, 80802, Munich, Germany
| | - K Eyerich
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology and Venerology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Dermatology and Venereology, Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - M P Menden
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
- Department of Biology, Ludwig-Maximilians University, Goßhadernerstrasse 2, Martinsried, 82152, Germany
- German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - S Eyerich
- Center for Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Biedersteinerstrasse 29, 80802, Munich, Germany.
| |
Collapse
|
6
|
Shi L, Liu C, Xiong H, Shi D. Elevation of IgE in patients with psoriasis: Is it a paradoxical phenomenon? Front Med (Lausanne) 2022; 9:1007892. [PMID: 36314037 PMCID: PMC9606585 DOI: 10.3389/fmed.2022.1007892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Immunoglobulin E (IgE) elevation is a hallmark of allergic conditions such as atopic dermatitis (AD). The pathogenesis of AD is typically associated with high levels of IL-4 and IL-13 produced by activated T helper 2 (Th2) cells. Psoriasis, on the other hand, is an inflammatory skin disease mainly driven by Th17 cells and their related cytokines. Although the immunopathologic reactions and clinical manifestations are often easily distinguished in the two skin conditions, patients with psoriasis may sometimes exhibit AD-like manifestations, such as elevated IgE and persistent pruritic lesions. Given the fact that the effective T cells have great plasticity to re-differentiate in response to innate and environmental factors, this unusual skin condition could be a consequence of a cross-reaction between distinct arms of T-cell and humoral immunity. Here we review the literature concerning the roles of IgE in the development of AD and psoriasis, showing that elevated IgE seems to be an important indicator for this non-typical psoriasis.
Collapse
Affiliation(s)
- Leyao Shi
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China,The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China
| | - Chen Liu
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China
| | - Huabao Xiong
- Basic Medical School, Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China,Huabao Xiong
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China,Department of Dermatology, Jining No.1 People's Hospital, Jining, China,*Correspondence: Dongmei Shi
| |
Collapse
|
7
|
Roesner LM, Farag AK, Pospich R, Traidl S, Werfel T. T-cell receptor sequencing specifies psoriasis as a systemic and atopic dermatitis as a skin-focused, allergen-driven disease. Allergy 2022; 77:2737-2747. [PMID: 35255168 DOI: 10.1111/all.15272] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Atopic dermatitis (AD) and psoriasis represent two of the most common inflammatory skin diseases in developed countries. A hallmark of both diseases is T-cell infiltration into the skin. However, it is still not clarified to what extent these infiltrating T cells are antigen-specific skin-homing T cells or unspecific heterogeneous bystander cells. METHODS To elucidate this, T cells from lesional skin and from blood of 9 AD and 10 psoriasis patients were compared by receptor (TCR) sequencing. Therefore, peripheral blood mononuclear cells (PBMC) were cell-sorted according to expression of the cutaneous leukocyte antigen (CLA) into skin-homing (CLA+ ) and non-skin-homing (CLA- ) subfractions. Aeroallergen-specific T-cell lines were grown from AD patients' PBMC in parallel. RESULTS Intra-individual comparison of TCRB CDR3 regions revealed that clonally expanded T cells in skin lesions of both AD and psoriasis patients corresponded to skin-homing circulating T cells. However, in psoriasis patients, these T-cell clones were also detectable to a larger extent among CLA- circulating T cells. Up to 28% of infiltrating cells in AD skin were identified as allergen-specific by overlapping TCR sequences. CONCLUSIONS Our data show that in line with the systemic nature of psoriasis, T-cell clones that infiltrate psoriatic skin lesions do not exclusively possess skin-homing ability and are therefore most probably specific to antigens that are not exclusively expressed or located in the skin. T cells driving AD skin inflammation appear to home nearly exclusively to the skin and are, to a certain extent, specific to aeroallergens.
Collapse
Affiliation(s)
- Lennart M Roesner
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Ahmed K Farag
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Rebecca Pospich
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Stephan Traidl
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Lee F, Gallo MV, Schell LM. Associations between autoimmune dysfunction and pollutants in Akwesasne Mohawk women: Dichlorodiphenyltrichloroethane and polychlorinated biphenyl exposure. Am J Hum Biol 2022; 34:e23773. [PMID: 35726969 DOI: 10.1002/ajhb.23773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Pollutant exposures, including polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT), have been found to disrupt normal immune function. Native American communities are disproportionately affected by autoimmune dysfunction and are more likely to be exposed to harmful pollutants than the general population. OBJECTIVE To determine the association between autoimmune dysfunction and pollutant exposure levels, this study evaluates the statistical relationship between the presence of autoimmune dysfunction and pollutant exposure. METHODS Information was collected from Akwesasne Mohawk women (n = 182), 21-39 years of age, between 2009 and 2013. Data collection included anthropometric measurements, medical diagnoses of autoimmune disease and symptoms of autoimmune dysfunction in the medical record, and blood draws for measurement of pollutants. Multivariate analyses determined the association between toxicant exposure and autoimmune dysfunction. RESULTS Toxicant p,p'-DDE was positively associated with an almost two-fold risk of autoimmune dysfunction. p,p'-DDE and PCB congeners 32, 136, and 138 were positively associated in a multivariate analysis with an autoimmune diagnosis. CONCLUSIONS Pollutant exposures, specifically to p,p'-DDE and some PCB congeners, are common exposures that are associated with autoimmune dysfunction and autoimmune disease, although there are other factors and causes related to autoimmune dysfunction incidence.
Collapse
Affiliation(s)
- Florence Lee
- Department of Anthropology, University at Albany, Albany, New York, USA
| | - Mia V Gallo
- Department of Anthropology, University at Albany, Albany, New York, USA
- Center for the Elimination of Minority Health Disparities, University at Albany, Albany, New York, USA
| | - Lawrence M Schell
- Department of Anthropology, University at Albany, Albany, New York, USA
- Center for the Elimination of Minority Health Disparities, University at Albany, Albany, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany, Albany, New York, USA
| |
Collapse
|
9
|
Tukaj S, Sitko K. Heat Shock Protein 90 (Hsp90) and Hsp70 as Potential Therapeutic Targets in Autoimmune Skin Diseases. Biomolecules 2022; 12:biom12081153. [PMID: 36009046 PMCID: PMC9405624 DOI: 10.3390/biom12081153] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/22/2022] Open
Abstract
Over a hundred different autoimmune diseases have been described to date, which can affect every organ in the body, including the largest one, the skin. In fact, up to one-fifth of the world's population suffers from chronic, noninfectious inflammatory skin diseases, the development of which is significantly influenced by an autoimmune response. One of the hallmarks of autoimmune diseases is the loss of immune tolerance, which leads to the formation of autoreactive lymphocytes or autoantibodies and, consequently, to chronic inflammation and tissue damage. The treatment of autoimmune skin diseases mainly focuses on immunosuppression (using, e.g., corticosteroids) but almost never leads to the development of permanent mechanisms of immune tolerance. In addition, current therapies and their long-term administration may cause serious adverse effects. Hence, safer and more effective therapies that bring sustained balance between pro- and anti-inflammatory responses are still desired. Both intra- and extracellular heat shock proteins (Hsps), specifically well-characterized inducible Hsp90 and Hsp70 chaperones, have been highlighted as therapeutic targets for autoimmune diseases. This review presents preclinical data on the involvement of Hsp90 and Hsp70 in modulating the immune response, specifically in the context of the treatment of selected autoimmune skin diseases with emphasis on autoimmune bullous skin diseases and psoriasis.
Collapse
|
10
|
Diamanti E, Föhr J, Papageorgiou A, Herbst M, Jahn S. Immunologie in der dermatologischen Praxis – wieviel, warum, wann? AKTUELLE DERMATOLOGIE 2022. [DOI: 10.1055/a-1699-5440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ZusammenfassungDie Haut als Grenzorgan zum Körperäußeren realisiert viele immunologische Abwehrfunktionen. Folglich sind Immunologie und Dermatologie eng miteinander verknüpft. Die Diagnostik immunologischer Hauterkrankungen und deren Immuntherapie, labormedizinische Analysen, Hyposensibilisierung – Begegnungen mit der Immunologie finden auch in einer dermatologischen Praxis im Alltag nahezu ständig statt. Ziel dieser Arbeit ist es, praxisnah aufzuzeigen, wie uns Dermatologen die Immunologie in unserer Fachdisziplin helfen kann.
Collapse
Affiliation(s)
| | - Julia Föhr
- Dermatologische Facharztpraxis Dr. Herbst & Kollegen, Darmstadt
- Klinik für Dermatologie und Allergologie, Philipps-Universität Marburg
| | | | - Matthias Herbst
- Dermatologische Facharztpraxis Dr. Herbst & Kollegen, Darmstadt
| | - Sigbert Jahn
- Dermatologische Facharztpraxis Dr. Herbst & Kollegen, Darmstadt
| |
Collapse
|
11
|
Roediger B, Schlapbach C. T cells in the skin: lymphoma and inflammatory skin disease. J Allergy Clin Immunol 2022; 149:1172-1184. [PMID: 35247433 DOI: 10.1016/j.jaci.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022]
Abstract
T cells are established contributors to the pathogenesis of atopic dermatitis (AD) and psoriasis, yet whether they are the key drivers or simply unwitting participants remains incompletely understood. Conversely, malignant T cells are the undisputed culprits of cutaneous T cell lymphoma (CTCL), a group of diseases that share key clinical, histopathological and molecular features with inflammatory skin disease (ISD). Here, we compare the pathogenesis of ISD and CTCL and discuss the resulting insights. Recurrent, skin-limited disease implicates skin-resident T cells (TRM) in both ISD and CTCL. In CTCL, malignant T cells recruit benign T cells into inflammatory skin lesions, a disease-amplifying function also proposed for pathogenic T cells in ISD. Mechanistically, cytokines produced by malignant T cells in CTCL and by pathogenic T cells in ISD, respectively, are likely both necessary and sufficient to drive skin inflammation and pruritus, which in turn promotes skin barrier dysfunction and dysbiosis. Therapies for ISD target T cell effector functions but do not address the chronicity of disease while treatments for CTCL target malignant T cells but not primarily the symptoms of the disease. By integrating our understanding of ISD and CTCL, important insights into pathogenesis and therapy can be made which may improve the lives of sufferers of both disease groups.
Collapse
Affiliation(s)
- Ben Roediger
- Autoimmunity, Transplantation and Inflammation (ATI), Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
12
|
Anti-Inflammatory Effects of Lagerstroemia ovalifolia Teijsm. & Binn. in TNF α/IFN γ-Stimulated Keratinocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2439231. [PMID: 34795780 PMCID: PMC8594990 DOI: 10.1155/2021/2439231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022]
Abstract
Ethnopharmacological Relevance. Atopic dermatitis is a chronic inflammatory skin disease. Lagerstroemia ovalifolia Teijsm. & Binn. (LO) has traditionally been used as an herbal medicine for anti-inflammatory diseases. The effect of LO on atopic dermatitis has not been verified scientifically. We investigated the effects of CHCl3 fraction number 5 of LO (LOC) on atopic dermatitis through cell-based experiments. HaCaT cells were treated with tumor necrosis factor-alpha (TNFα)/interferon-gamma (IFNγ) to induce an inflammatory reaction. Proinflammatory cytokines, interleukin- (IL-) 6, IL-8, and IL-1β and chemokines such as thymus and activation-regulated chemokine (TARC/CCL17), monocyte chemoattractant protein 1 (MCP1/CCL2), and macrophage-derived chemokine (MDC/CCL22) were measured by RT-PCR and ELISA. In addition, the degree of phosphorylation and activation of JAK/STAT1, PI3K/AKT, and nuclear factor-kappa B (NF-κB) were measured by western blot and luciferase assays. The production of inflammatory cytokines and chemokines and activation of the JAK/STAT1, PI3K/AKT, and NF-κB pathways were induced by TNFα/IFNγ in HaCaT cells. Under these conditions, LOC treatment inhibited the production of targeted cytokines and chemokines and decreased the phosphorylation and activation of JAK/STAT1, PI3K/AKT, and NF-κB. These results suggest that LOC reduces the production of proinflammatory cytokines and chemokines by suppressing the JAK/STAT1, PI3K/AKT, and NF-κB pathways. Therefore, LOC may have potential as a drug for atopic dermatitis.
Collapse
|
13
|
Sitko K, Bednarek M, Mantej J, Trzeciak M, Tukaj S. Circulating heat shock protein 90 (Hsp90) and autoantibodies to Hsp90 are increased in patients with atopic dermatitis. Cell Stress Chaperones 2021; 26:1001-1007. [PMID: 34532820 PMCID: PMC8578264 DOI: 10.1007/s12192-021-01238-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most common chronic inflammatory dermatoses characterized by persistent itching and recurrent eczematous lesions. While the primary events and key drivers of AD are topics of ongoing debate, cutaneous inflammation due to inappropriate IgE (auto)antibody-related immune reactions is frequently considered. Highly conserved and immunogenic heat shock protein 90 (Hsp90), a key intra- and extracellular chaperone, can activate the immune response driving the generation of circulating anti-Hsp90 autoantibodies that are found to be elevated in several autoimmune disorders. Here, for the first time, we observed that serum levels of Hsp90 and anti-Hsp90 IgE autoantibodies are significantly elevated (p < 0.0001) in AD patients (n = 29) when compared to age- and gender-matched healthy controls (n = 70). We revealed a positive correlation (0.378, p = 0.042) between serum levels of Hsp90 and the severity of AD assessed by Scoring Atopic Dermatitis (SCORAD). In addition, seropositivity for anti-Hsp90 IgE has been found in 48.27% of AD patients and in 2.85% of healthy controls. Although further studies on a larger group of patients are needed to confirm presented data, our results suggest that extracellular Hsp90 and autoantibodies to Hsp90 deserve attention in the study of the mechanisms that promote the development and/or maintenance of atopic dermatitis.
Collapse
Affiliation(s)
- Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Marta Bednarek
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Magdalena Trzeciak
- Department of Dermatology, Venerology and Allergology, Medical University of Gdańsk, Gdańsk, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
14
|
Targeted Therapies in Autoimmune Skin Diseases. J Invest Dermatol 2021; 142:969-975.e7. [PMID: 34756580 DOI: 10.1016/j.jid.2021.08.439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 01/21/2023]
Abstract
Unlike the established anti-inflammatory drugs with a broad range, new-targeted therapeutic approaches have emerged in the management of autoimmune skin diseases to increase efficacy and decrease adverse reactions on the basis of an improved molecular understanding of pathogenesis. Most inflammatory dermatoses are driven by misled immune responses physiologically directed at exogenous pathogens, that is, type 1 immunity against viral pathogens, type 2 immunity against parasites, and type 3 immunity against fungi and bacteria. Pathogenic hallmarks of these major immune reaction patterns are characterized within this article, and a comprehensive overview of current clinical trials evaluating targeted therapeutics for respective dermatoses is outlined.
Collapse
|
15
|
Seiringer P, Garzorz-Stark N, Eyerich K. T-Cell‒Mediated Autoimmunity: Mechanisms and Future Directions. J Invest Dermatol 2021; 142:804-810. [PMID: 34538423 DOI: 10.1016/j.jid.2021.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/28/2022]
Abstract
T cells are key drivers of autoimmunity in numerous noncommunicable inflammatory skin diseases by directly harming host tissue or through helping B cells in producing autoantibodies. Technological advances have contributed to identifying autoantigens, the Holy Grail of autoimmunity, in many inflammatory disorders of the skin. Novel therapeutic approaches such as chimeric (auto)antibody receptor T cells are a milestone on the way to finding individualized, well-tolerated, targeted therapies. This review summarizes the current knowledge on pathogenesis, immune response pattern‒related ontology, diagnostic approaches, and treatment options of autoimmune skin diseases.
Collapse
Affiliation(s)
- Peter Seiringer
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Center of Allergy and Environment (ZAUM), Helmholtz Center and Technical University of Munich, Munich, Germany
| | - Natalie Garzorz-Stark
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden; Center for molecular medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Kilian Eyerich
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden; Center for molecular medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
16
|
Mocanu M, Vâță D, Alexa AI, Trandafir L, Patrașcu AI, Hâncu MF, Gheucă-Solovăstru L. Atopic Dermatitis-Beyond the Skin. Diagnostics (Basel) 2021; 11:1553. [PMID: 34573894 PMCID: PMC8464732 DOI: 10.3390/diagnostics11091553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022] Open
Abstract
Atopic dermatitis is a chronic inflammatory disease that can arise during the first months of life or at maturity and have a significant negative impact on the quality of life. The main pathogenic mechanism is the breakdown of cutaneous barrier integrity, which is associated with systemic inflammatory immunologic disorders. Atopic dermatitis involves numerous immunologic, allergic, respiratory, and ophthalmologic comorbidities that develop through similar intricate pathogenic phenomena. The atopic march represents the evolution in time of various allergic diseases, of which food allergies often cause the first manifestations of atopy, even from a very young age. Chronic inflammation translated through specific markers, next to increased immunoglobulin E (IgE) serum levels and heterogenous clinical manifestations, argue for the inclusion of atopic dermatitis in the systemic disease category.
Collapse
Affiliation(s)
- Mădălina Mocanu
- Department of Oral Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dan Vâță
- Department of Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Anisia-Iuliana Alexa
- Department of Ophthalmology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Trandafir
- Department of Mother and Child Medicine-Pediatrics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Adriana-Ionela Patrașcu
- Dermatology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iași, Romania; (A.-I.P.); (M.F.H.)
| | - Mădălina Florina Hâncu
- Dermatology Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iași, Romania; (A.-I.P.); (M.F.H.)
| | - Laura Gheucă-Solovăstru
- Department of Dermatology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
17
|
Traidl S, Werfel T, Traidl-Hoffmann C. Atopic Eczema: Pathophysiological Findings as the Beginning of a New Era of Therapeutic Options. Handb Exp Pharmacol 2021; 268:101-115. [PMID: 34236520 DOI: 10.1007/164_2021_492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Atopic eczema (AE) is a chronic inflammatory disease hallmarked by intense pruritus and eczematous lesions. It depicts one of the most common skin diseases affecting a major part of children and several percentages of adults.Both pathogenesis and pathophysiology are based on complex orchestrated interactions of skin barrier defects, immunological changes, the environment, and an abundance of other contributing factors. Frequently, AE displays the starting point for other allergic diseases such as allergic asthma and rhinoconjunctivitis. Additionally, the risk of developing food allergy is increased. Furthermore, the disease is accompanied by a susceptibility to bacterial, fungal, and viral infections. The development of new therapies received great impetus by an ample research of the pathophysiological mechanisms, leading to a new era in the treatment of severe atopic eczema due to targeted treatments, e.g. the IL-4R alpha specific monoclonal antibody dupilumab.This article provides an overview of the causative and pathophysiological characteristics, the clinical and diagnostic aspects as well as current and future therapeutical possibilities focusing allergic aspects contributing to the course of the disease.
Collapse
Affiliation(s)
- Stephan Traidl
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany. .,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Claudia Traidl-Hoffmann
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum München-German Research Center for Environmental Health, Augsburg, Germany.,Outpatient Clinic for Environmental Medicine, University Clinic Augsburg, Augsburg, Germany.,Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
18
|
Precision medicine reaching out to the patients in allergology - a German-Japanese workshop report. Allergol Select 2021; 5:162-179. [PMID: 34079922 PMCID: PMC8167740 DOI: 10.5414/alx02234e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
An expert workshop in collaboration of the German Society of Allergy and Clinical Immunology (DGAKI) and the Japanese Society of Allergy (JSA) provided a platform for key opinion leaders of both countries aimed to join expertise and to highlight current developments and achievements in allergy research. Key domains of the meeting included the following seven main sections and related subchapters: 1) basic immunology, 2) bronchial asthma, 3) prevention of allergic diseases, 4) food allergy and anaphylaxis, 5) atopic dermatitis, 6) venom allergy, and 7) upper airway diseases. This report provides a summary of panel discussions of all seven domains and highlights unmet needs and project possibilities of enhanced collaborations of scientific projects.
Collapse
|
19
|
Atopic dermatitis and dementia risk: A nationwide longitudinal study. Ann Allergy Asthma Immunol 2021; 127:200-205. [PMID: 33716147 DOI: 10.1016/j.anai.2021.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/24/2021] [Accepted: 03/05/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Retrospective studies have suggested that patients with dementia have higher prevalence of atopic dermatitis (AD) than those without dementia. However, the temporal association of AD with subsequent dementia remains unknown. OBJECTIVE To assess the temporal association of AD with subsequent dementia. METHODS We included data of patients with AD aged 45 years and older (n = 1059) and 1:10 age, sex, residence, income, and dementia-related comorbidity-matched controls (n = 10,590) from the Taiwan National Health Insurance Research Database and reviewed their subsequent dementia development from the enrollment date to the end of 2013. RESULTS After adjustments for dementia-related comorbidities, patients with AD were found to be more likely to develop any dementia (hazard ratio [HR], 2.02; 95% confidence interval [CI], 1.24-3.29), particularly Alzheimer's disease (HR, 3.74; 95% CI, 1.17-11.97), during the follow-up period than those in the control group. Moderate-to-severe AD was associated with a high subsequent dementia risk (HR, 4.64; 95% CI, 2.58-8.33). Sensitivity analyses with the exclusion of the first 3 (HR, 2.20; 95% CI, 1.28-3.80) or 5 (HR, 2.05; 95% CI, 1.08-3.89) years of observation revealed consistent findings. CONCLUSION AD may be an independent risk factor for new-onset dementia. Clinicians may monitor the trajectory of neurocognitive function among elderly patients with AD. Additional studies elucidating the pathomechanisms between AD and subsequent dementia are warranted.
Collapse
|
20
|
Rindler K, Krausgruber T, Thaler FM, Alkon N, Bangert C, Kurz H, Fortelny N, Rojahn TB, Jonak C, Griss J, Bock C, Brunner PM. Spontaneously Resolved Atopic Dermatitis Shows Melanocyte and Immune Cell Activation Distinct From Healthy Control Skin. Front Immunol 2021; 12:630892. [PMID: 33717163 PMCID: PMC7943477 DOI: 10.3389/fimmu.2021.630892] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/01/2021] [Indexed: 01/11/2023] Open
Abstract
Atopic dermatitis (AD) typically starts in infancy or early childhood, showing spontaneous remission in a subset of patients, while others develop lifelong disease. Despite an increased understanding of AD, factors guiding its natural course are only insufficiently elucidated. We thus performed suction blistering in skin of adult patients with stable, spontaneous remission from previous moderate-to-severe AD during childhood. Samples were compared to healthy controls without personal or familial history of atopy, and to chronic, active AD lesions. Skin cells and tissue fluid obtained were used for single-cell RNA sequencing and proteomic multiplex assays, respectively. We found overall cell composition and proteomic profiles of spontaneously healed AD to be comparable to healthy control skin, without upregulation of typical AD activity markers (e.g., IL13, S100As, and KRT16). Among all cell types in spontaneously healed AD, melanocytes harbored the largest numbers of differentially expressed genes in comparison to healthy controls, with upregulation of potentially anti-inflammatory markers such as PLA2G7. Conventional T-cells also showed increases in regulatory markers, and a general skewing toward a more Th1-like phenotype. By contrast, gene expression of regulatory T-cells and keratinocytes was essentially indistinguishable from healthy skin. Melanocytes and conventional T-cells might thus contribute a specific regulatory milieu in spontaneously healed AD skin.
Collapse
Affiliation(s)
- Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix M. Thaler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Harald Kurz
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas B. Rojahn
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Medical Statistics, Informatics, and Intelligent Systems, Institute of Artificial Intelligence and Decision Support, Medical University of Vienna, Vienna, Austria
| | - Patrick M. Brunner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Dias-Barbosa C, Matos R, Vernon M, Carney CE, Krystal A, Puelles J. Content validity of a sleep numerical rating scale and a sleep diary in adults and adolescents with moderate-to-severe atopic dermatitis. J Patient Rep Outcomes 2020; 4:100. [PMID: 33226517 PMCID: PMC7683746 DOI: 10.1186/s41687-020-00265-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023] Open
Abstract
Background The intense itching associated with atopic dermatitis (AD) often causes patients to experience severe sleep disturbance. Here, we describe the results of a two-phase concept elicitation and cognitive interview study to establish the content validity of a sleep disturbance numerical rating scale (SD NRS) and a Consensus Sleep Diary adapted for adults and adolescents with moderate-to-severe AD (CSD-AD©). Results In phase I, a concept elicitation conducted in 20 adults and 10 adolescents with moderate-to-severe AD revealed that the following sleep-related issues were important and relevant: nighttime awakening (87%), trouble falling asleep (73%), feeling unrested (53%), daytime fatigue or sleepiness (53%), and feeling as if they did not get enough sleep (33%). The frequency and extent of sleep disturbance varied substantially from day to day due to varying degrees of itching and flares, medication use, and changes in the weather. All participants understood the SD NRS question, with most finding it easy or very easy to understand (100% of adults and 90% of adolescents) and most understanding the anchors as intended (95% of adults, and 100% of adolescents). Most participants (94% of adults, and 90% of adolescents) indicated that they would consider a one- or two-point change meaningful on the SD NRS. The CSD-AD© was revised based on participant feedback, and tested during phase II in a convenience sample of six adults and four adolescents from phase I. The changes made to the CSD-AD© were confirmed to be relevant and understandable. All patients were able to provide an answer to each item in the CSD-AD©, and most were able to estimate the duration of nighttime awakenings, daytime naps, and dozing. Conclusions The study supported the content validity of the SD NRS and CSD-AD© in adults and adolescents with moderate-to-severe AD. It also emphasized the importance of using these instruments daily when assessing the benefit of a new treatment on sleep quality in this population. Supplementary Information Supplementary information accompanies this paper at 10.1186/s41687-020-00265-y.
Collapse
Affiliation(s)
| | - Rodolfo Matos
- Evidera, 7101 Wisconsin Avenue, Suite 1400, Bethesda, MA, 20814, USA.
| | - Margaret Vernon
- Evidera, 7101 Wisconsin Avenue, Suite 1400, Bethesda, MA, 20814, USA
| | - Colleen E Carney
- Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| | - Andrew Krystal
- University of California, San Francisco, Weill Institute for Neurosciences, 401 Parnassus Avenue, San Francisco, CA, 94143-0984, USA
| | - Jorge Puelles
- Galderma, World Trade Center, Avenue Gratta-Paille 2, 1018, Lausanne, Switzerland
| |
Collapse
|
22
|
Pellefigues C. IgE Autoreactivity in Atopic Dermatitis: Paving the Road for Autoimmune Diseases? Antibodies (Basel) 2020; 9:E47. [PMID: 32911788 PMCID: PMC7551081 DOI: 10.3390/antib9030047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022] Open
Abstract
Atopic dermatitis (AD) is a common skin disease affecting 20% of the population beginning usually before one year of age. It is associated with the emergence of allergen-specific IgE, but also with autoreactive IgE, whose function remain elusive. This review discusses current knowledge relevant to the mechanisms, which leads to the secretion of autoreactive IgE and to the potential function of these antibodies in AD. Multiple autoantigens have been described to elicit an IgE-dependent response in this context. This IgE autoimmunity starts in infancy and is associated with disease severity. Furthermore, the overall prevalence of autoreactive IgE to multiple auto-antigens is high in AD patients. IgE-antigen complexes can promote a facilitated antigen presentation, a skewing of the adaptive response toward type 2 immunity, and a chronic skin barrier dysfunction and inflammation in patients or AD models. In AD, skin barrier defects and the atopic immune environment facilitate allergen sensitization and the development of other IgE-mediated allergic diseases in a process called the atopic march. AD is also associated epidemiologically with several autoimmune diseases showing autoreactive IgE secretion. Thus, a potential outcome of IgE autoreactivity in AD could be the development of further autoimmune diseases.
Collapse
Affiliation(s)
- Christophe Pellefigues
- INSERM UMRS1149-CNRS ERL8252, Team «Basophils and Mast cells in Immunopathology», Centre de recherche sur l'inflammation (CRI), Inflamex, DHU Fire, Université de Paris, 75018 Paris, France
| |
Collapse
|
23
|
Badloe FMS, De Vriese S, Coolens K, Schmidt-Weber CB, Ring J, Gutermuth J, Kortekaas Krohn I. IgE autoantibodies and autoreactive T cells and their role in children and adults with atopic dermatitis. Clin Transl Allergy 2020; 10:34. [PMID: 32774842 PMCID: PMC7398196 DOI: 10.1186/s13601-020-00338-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
The pathophysiology of atopic dermatitis (AD) is highly complex and understanding of disease endotypes may improve disease management. Immunoglobulins E (IgE) against human skin epitopes (IgE autoantibodies) are thought to play a role in disease progression and prolongation. These antibodies have been described in patients with severe and chronic AD, suggesting a progression from allergic inflammation to severe autoimmune processes against the skin. This review provides a summary of the current knowledge and gaps on IgE autoreactivity and self-reactive T cells in children and adults with AD based on a systematic search. Currently, the clinical relevance and the pathomechanism of IgE autoantibodies in AD needs to be further investigated. Additionally, it is unknown whether the presence of IgE autoantibodies in patients with AD is an epiphenomenon or a disease endotype. However, increased knowledge on the clinical relevance and the pathophysiologic role of IgE autoantibodies and self-reactive T cells in AD can have consequences for diagnosis and treatment. Responses to the current available treatments can be used for better understanding of the pathways and may shed new lights on the treatment options for patients with AD and autoreactivity against skin epitopes. To conclude, IgE autoantibodies and self-reactive T cells can contribute to the pathophysiology of AD based on the body of evidence in literature. However, many questions remain open. Future studies on autoreactivity in AD should especially focus on the clinical relevance, the contribution to the disease progression and chronicity on cellular level, the onset and therapeutic strategies.
Collapse
Affiliation(s)
- Fariza Mishaal Saiema Badloe
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium
| | - Shauni De Vriese
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium
| | - Katarina Coolens
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany.,Member of the German Center of Lung Research (DZL) and the Helmholtz Initiative for Inflammation and Immunology (I&I), Munich, Germany
| | - Johannes Ring
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium.,Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Jan Gutermuth
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium
| | - Inge Kortekaas Krohn
- Department of Dermatology, SKIN Research Group, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 103, Building D, Room D148, 1090 Brussels, Belgium
| |
Collapse
|
24
|
Gudjonsson JE, Kabashima K, Eyerich K. Mechanisms of skin autoimmunity: Cellular and soluble immune components of the skin. J Allergy Clin Immunol 2020; 146:8-16. [PMID: 32631499 DOI: 10.1016/j.jaci.2020.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases are driven by either T cells or antibodies reacting specifically to 1 or more self-antigens. Although a number of self-antigens associated with skin diseases have been identified, the causative antigen(s) remains unknown in the great majority of skin diseases suspected to be autoimmune driven. Model diseases such as pemphigus, dermatitis herpetiformis, and more recently psoriasis have added greatly to our understanding of skin autoimmunity. Depending on the dominant T- or B-cell phenotype, skin autoimmune diseases usually follow 1 of 6 immune response patterns: lichenoid, eczematous, bullous, psoriatic, fibrogenic, or granulomatous. Usually, skin autoimmunity develops as a consequence of several events-an altered microbiome, inherited dysfunctional immunity, antigens activating innate immunity, epigenetic modifications, sex predisposition, and impact of antigens either as neoantigen or through molecular mimicry. This review summarizes currently known antigens of skin autoimmune diseases and discusses mechanisms of skin autoimmunity.
Collapse
Affiliation(s)
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kilian Eyerich
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Department of Dermatology and Venereology, Stockholm, Sweden; Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany.
| |
Collapse
|
25
|
Gong JJ, Margolis DJ, Monos DS. Predictive in silico binding algorithms reveal HLA specificities and autoallergen peptides associated with atopic dermatitis. Arch Dermatol Res 2020; 312:647-656. [PMID: 32152724 DOI: 10.1007/s00403-020-02059-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis (AD) is a skin disease that results from a combination of skin barrier dysfunction and immune dysregulation. The immune dysregulation is often associated with IgE sensitivity. There is also evidence that autoallergens Hom s 1, 2, 3, and 4 play a role in AD; it is possible that patients with specific HLA subtypes are predisposed to autoreactivity due to increased presentation of autoallergen peptides. The goal of our study was to use in silico epitope prediction platforms as an approach to identify HLA subtypes that may preferentially bind autoallergen peptides and are thus candidates for further study. Considering the previously described association of DRB1 alleles with AD and progression of disease, emphasis was placed on DRB1. Certain DRB1 alleles (08:04, 11:01, and 11:04) were identified by both algorithms to bind a significant percent of the generated autoallergen peptides. Conversely, autoallergen core peptide sequences FRQLSHRFH and IRAKLRLQA (Hom s 1), IRKSKNILF (Hom s 2), FKWVPVTDS and MAAIEKVRK (Hom s 3), and FRYFATLKV (Hom s 4) were predicted to bind many DRB1 alleles and, thus, may play a role in the pathogenesis of AD. Our findings provide candidate DRB1 alleles and autoallergen epitopes that will guide future studies exploring the relationship between DRB1 subtype and autoreactivity in AD. A similar approach can be used for any antigen that has been associated with an IgE response and AD.
Collapse
Affiliation(s)
- Jan J Gong
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David J Margolis
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA. .,Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Dimitrios S Monos
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|