1
|
Zhang Y, Morris R, Brown GJ, Lorenzo AMD, Meng X, Kershaw NJ, Kiridena P, Burgio G, Gross S, Cappello JY, Shen Q, Wang H, Turnbull C, Lea-Henry T, Stanley M, Yu Z, Ballard FD, Chuah A, Lee JC, Hatch AM, Enders A, Masters SL, Headley AP, Trnka P, Mallon D, Fletcher JT, Walters GD, Šestan M, Jelušić M, Cook MC, Athanasopoulos V, Fulcher DA, Babon JJ, Vinuesa CG, Ellyard JI. Rare SH2B3 coding variants in lupus patients impair B cell tolerance and predispose to autoimmunity. J Exp Med 2024; 221:e20221080. [PMID: 38417019 PMCID: PMC10901239 DOI: 10.1084/jem.20221080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/14/2023] [Accepted: 01/17/2024] [Indexed: 03/01/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with a clear genetic component. While most SLE patients carry rare gene variants in lupus risk genes, little is known about their contribution to disease pathogenesis. Amongst them, SH2B3-a negative regulator of cytokine and growth factor receptor signaling-harbors rare coding variants in over 5% of SLE patients. Here, we show that unlike the variant found exclusively in healthy controls, SH2B3 rare variants found in lupus patients are predominantly hypomorphic alleles, failing to suppress IFNGR signaling via JAK2-STAT1. The generation of two mouse lines carrying patients' variants revealed that SH2B3 is important in limiting the number of immature and transitional B cells. Furthermore, hypomorphic SH2B3 was shown to impair the negative selection of immature/transitional self-reactive B cells and accelerate autoimmunity in sensitized mice, at least in part due to increased IL-4R signaling and BAFF-R expression. This work identifies a previously unappreciated role for SH2B3 in human B cell tolerance and lupus risk.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Rhiannon Morris
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Grant J. Brown
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Ayla May D. Lorenzo
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Xiangpeng Meng
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Nadia J. Kershaw
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Pamudika Kiridena
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Gaétan Burgio
- Division of Genome Sciences and Cancer, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Simon Gross
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Jean Y. Cappello
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Qian Shen
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Francis Crick Institute, London, UK
| | - Hao Wang
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Francis Crick Institute, London, UK
| | - Cynthia Turnbull
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Tom Lea-Henry
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- The Canberra Hospital, Garran, Australia
| | - Maurice Stanley
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Zhijia Yu
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Fiona D. Ballard
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Aaron Chuah
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - James C. Lee
- Francis Crick Institute, London, UK
- Department of Gastroenterology, Division of Medicine, Institute for Liver and Digestive Health, University College London, London, UK
| | - Ann-Maree Hatch
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- The Canberra Hospital, Garran, Australia
| | - Anselm Enders
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Seth L. Masters
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | | | - Peter Trnka
- Queensland Children’s Hospital, South Brisbane, Australia
| | | | | | | | - Mario Šestan
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marija Jelušić
- Department of Pediatrics, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Matthew C. Cook
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- The Canberra Hospital, Garran, Australia
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Vicki Athanasopoulos
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - David A. Fulcher
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| | - Jeffrey J. Babon
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Carola G. Vinuesa
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Francis Crick Institute, London, UK
| | - Julia I. Ellyard
- Division of Immunology and Infectious Diseases, John Curtin School of Medical Research, The Australian National University, Acton, Australia
- Centre for Personalised Immunology, John Curtin School of Medical Research, The Australian National University, Acton, Australia
| |
Collapse
|
3
|
Caldirola MS, Martínez MP, Bezrodnik L, Zwirner NW, Gaillard MI. Immune Monitoring of Patients With Primary Immune Regulation Disorders Unravels Higher Frequencies of Follicular T Cells With Different Profiles That Associate With Alterations in B Cell Subsets. Front Immunol 2020; 11:576724. [PMID: 33193371 PMCID: PMC7658009 DOI: 10.3389/fimmu.2020.576724] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
Primary immune regulation disorders lead to autoimmunity, allergy and inflammatory conditions due to defects in the immune homeostasis affecting different T, B and NK cell subsets. To improve our understanding of these conditions, in this work we analyzed the T and B cell compartments of 15 PID patients with dysregulation, including 3 patients with STAT1 GOF mutation, 7 patients with CVID with dysregulation, 3 patients with mutations in CTLA4, 1 patient with CD25 mutation and 1 patient with STAT5b mutation and compared them with healthy donors and with CVID patients without dysregulation. CD4+ and CD8+ T cells from the patients exhibited a significant decreased frequency of naïve and regulatory T cells with increased frequencies of activated cells, central memory CD4+ T cells, effector memory CD8+ T cells and terminal effector CD8+ T cells. Patients also exhibited a significantly increased frequency of circulating CD4+ follicular helper T cells, with altered frequencies of cTfh cell subsets. Such cTfh cells were skewed toward cTfh1 cells in STAT1 GOF, CTLA4, and CVID patients, while the STAT5b deficient patient presented a skew toward cTfh17 cells. These alterations confirmed the existence of an imbalance in the cTfh1/cTfh17 ratio in these diseases. In addition, we unraveled a marked dysregulation in the B cell compartment, characterized by a prevalence of transitional and naïve B cells in STAT1 GOF and CVID patients, and of switched-memory B cells and plasmablast cells in the STAT5b deficient patient. Moreover, we observed a significant positive correlation between the frequencies cTfh17 cells and switched-memory B cells and between the frequency of switched-memory B cells and the serum IgG. Therefore, primary immunodeficiencies with dysregulation are characterized by a skew toward an activated/memory phenotype within the CD4+ and CD8+ T cell compartment, accompanied by abnormal frequencies of Tregs, cTfh, and their cTfh1 and cTfh17 subsets that likely impact on B cell help for antibody production, which likely contributes to their autoimmune and inflammatory conditions. Therefore, assessment of these alterations by flow cytometry constitutes a simple and straightforward manner to improve diagnosis of these complex clinical entities that may impact early diagnosis and patients' treatment. Also, our findings unravel phenotypic alterations that might be associated, at least in part, with some of the clinical manifestations observed in these patients.
Collapse
Affiliation(s)
- María Soledad Caldirola
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - María Paula Martínez
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina.,Centro de Inmunología Clínica Dra. Bezrodnik, Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Laboratorio de Fisiopatología de la Inmunidad Innata, Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Isabel Gaillard
- Inmunología, Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP- CONICET-GCBA)-Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina.,Sección Citometría-Laboratorio Stamboulian, Buenos Aires, Argentina
| |
Collapse
|