1
|
Kavanagh D, Barratt J, Schubart A, Webb NJA, Meier M, Fakhouri F. Factor B as a therapeutic target for the treatment of complement-mediated diseases. Front Immunol 2025; 16:1537974. [PMID: 40028332 PMCID: PMC11868072 DOI: 10.3389/fimmu.2025.1537974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
The complement system, consisting of three initiating pathways-classical, lectin and alternative, is an important part of innate immunity. Dysregulation of the complement system is implicated in the pathogenesis of several autoimmune and inflammatory diseases. Therapeutic inhibition of the complement system has been recognized as a viable approach to drug development and has been successful with the approval of a small number of complement inhibitors for diseases such as paroxysmal nocturnal hemoglobinuria, atypical hemolytic uremic syndrome, neuromyelitis optica, myasthenia gravis and geographic atrophy. More recently, therapies selectively targeting the alternative pathway (AP), which drives the amplification of the complement responses, are being evaluated for these complement-mediated diseases. Complement Factor B, a serine protease, is a unique component of the AP that is essential for the catalytic activity of AP C3 convertase and AP C5 convertase. Inhibition of Factor B blocks the activity of the alternative pathway and the amplification loop, and subsequent generation of the membrane attack complex downstream; however, it has no effect on the initial activation mediated by the classical and lectin complement pathways. Therefore, Factor B is an attractive target for diseases in which the AP is overactivated. In this review, we provide an overview of Factor B and its critical role in the AP, discuss the benefit-risk of Factor B inhibition as a targeted therapeutic strategy, and describe the various Factor B inhibitors that are approved and/or in clinical development.
Collapse
Affiliation(s)
- David Kavanagh
- National Renal Complement Therapeutics Centre, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, The John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Anna Schubart
- Department of Immunology, Novartis BioMedical Research, Basel, Switzerland
| | | | | | - Fadi Fakhouri
- Service of Nephrology and Hypertension, Centre Hospitalier Universitaire Vaudois, UNIL, Lausanne, Switzerland
| |
Collapse
|
2
|
Troise D, Allegra C, Cirolla LA, Mercuri S, Infante B, Castellano G, Stallone G. Exploring Potential Complement Modulation Strategies for Ischemia-Reperfusion Injury in Kidney Transplantation. Antioxidants (Basel) 2025; 14:66. [PMID: 39857400 PMCID: PMC11761266 DOI: 10.3390/antiox14010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The complement system plays a crucial role in regulating the inflammatory responses in kidney transplantation, potentially contributing to early decline in kidney function. Ischemia-reperfusion injury (IRI) is among the factors affecting graft outcomes and a primary contributor to delayed graft function. Complement activation, particularly the alternative pathway, participates in the pathogenesis of IRI, involving all kidney compartments. In particular, tubular epithelial cells often acquire a dysfunctional phenotype that can exacerbate complement activation and kidney damage. Currently, complement-modulating drugs are under investigation for the treatment of kidney diseases. Many of these drugs have shown potential therapeutic benefits, but no effective clinical treatments for renal IRI have been identified yet. In this review, we will explore drugs that target complement factors, complement receptors, and regulatory proteins, aiming to highlight their potential value in improving the management of renal IRI.
Collapse
Affiliation(s)
- Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Costanza Allegra
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Luciana Antonia Cirolla
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Castellano
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
3
|
Lokkur P, Bansal SB. Complement in Kidney Transplantation. Transplant Rev (Orlando) 2025; 39:100897. [PMID: 39615219 DOI: 10.1016/j.trre.2024.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Transplantation is the treatment of choice in most patients with kidney failure. The complement system plays a vital role in transplantation. The complement system forms a major part of innate immunity and acts as a bridge between innate and acquired immunity. Many diseases, particularly concerning the kidneys, result from complement system dysregulation, like atypical hemolytic uremic syndrome (aHUS), C3 glomerulopathy (C3GN), systemic lupus erythematosus (SLE and some other immune complex diseases. The complement system activation is a very important part of post-transplant events like ischemia-reperfusion injury (IRI), delayed graft function (DGF), antibody-mediated rejection (ABMR) and thrombotic microangiopathy (TMA). A better understanding of the complement cascade can help to plan strategies to prevent and manage complement-related problems before and after kidney transplantation. Many newer molecules are either being developed or in the pipeline, which target the complement system at various stages. These novel therapeutics are now considered additional measures to improve graft survival. This review summarises the complement cascade, its role in kidney diseases and kidney transplantation, and possible areas of target and novel therapeutics.
Collapse
Affiliation(s)
- Pooja Lokkur
- Department of Nephrology and Kidney Transplantation, Medanta Medicity, Sector 38, Gurgaon 122001, India
| | - Shyam Bihari Bansal
- Department of Nephrology and Kidney Transplantation, Medanta Medicity, Sector 38, Gurgaon 122001, India.
| |
Collapse
|
4
|
Idouz K, Belhaj A, Rondelet B, Dewachter L, Flamion B, Kirschvink N, Dogné S. Cascading renal injury after brain death: Unveiling glycocalyx alteration and the potential protective role of tacrolimus. Front Cell Dev Biol 2024; 12:1449209. [PMID: 39165663 PMCID: PMC11333349 DOI: 10.3389/fcell.2024.1449209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Brain death (BD) is a complex medical state that triggers systemic disturbances and a cascade of pathophysiological processes. This condition significantly impairs both kidney function and structural integrity, thereby presenting considerable challenges to graft viability and the long-term success of transplantation endeavors. Tacrolimus (FK506), an immunosuppressive drug, was used in this study to assess its impact as a pretreatment on brain death-induced renal injury. This study aimed to investigate changes associated with brain death-induced renal injury in a 4-month-old female porcine model. The experimental groups included brain death placebo-pretreated (BD; n = 9), brain death tacrolimus-pretreated using the clinical dose of 0.25 mg/kg the day before surgery, followed by 0.05 mg/kg/day 1 hour before the procedure (BD + FK506; n = 8), and control (ctrl, n = 7) piglets, which did not undergo brain death induction. Furthermore, we aimed to assess the effect of FK506 on these renal alterations through graft preconditioning. We hypothesized that immunosuppressive properties of FK506 reduce tissue inflammation and preserve the glycocalyx. Our findings revealed a series of interconnected events triggered by BD, leading to a deterioration of renal function and increased proteinuria, increased apoptosis in the vessels, glomeruli and tubules, significant leukocyte infiltration into renal tissue, and degradation of the glycocalyx in comparison with ctrl group. Importantly, treatment with FK506 demonstrated significant efficacy in attenuating these adverse effects. FK506 helped reduce apoptosis, maintain glycocalyx integrity, regulate neutrophil infiltration, and mitigate renal injury following BD. This study offers new insights into the pathophysiology of BD-induced renal injury, emphasizing the potential of FK506 pretreatment as a promising therapeutic intervention for organ preservation, through maintaining endothelial function with the additional benefit of limiting the risk of rejection.
Collapse
Affiliation(s)
- Kaoutar Idouz
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
| | - Asmae Belhaj
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UCL Namur, UCLouvain, Yvoir, Belgium
| | - Benoit Rondelet
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UCL Namur, UCLouvain, Yvoir, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Brussels, Belgium
| | - Bruno Flamion
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
- Clinical Development, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Nathalie Kirschvink
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
| | - Sophie Dogné
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
| |
Collapse
|
5
|
Lasorsa F, Rutigliano M, Milella M, d’Amati A, Crocetto F, Pandolfo SD, Barone B, Ferro M, Spilotros M, Battaglia M, Ditonno P, Lucarelli G. Ischemia-Reperfusion Injury in Kidney Transplantation: Mechanisms and Potential Therapeutic Targets. Int J Mol Sci 2024; 25:4332. [PMID: 38673917 PMCID: PMC11050495 DOI: 10.3390/ijms25084332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Kidney transplantation offers a longer life expectancy and a better quality of life than dialysis to patients with end-stage kidney disease. Ischemia-reperfusion injury (IRI) is thought to be a cornerstone in delayed or reduced graft function and increases the risk of rejection by triggering the immunogenicity of the organ. IRI is an unavoidable event that happens when the blood supply is temporarily reduced and then restored to an organ. IRI is the result of several biological pathways, such as transcriptional reprogramming, apoptosis and necrosis, innate and adaptive immune responses, and endothelial dysfunction. Tubular cells mostly depend on fatty acid (FA) β-oxidation for energy production since more ATP molecules are yielded per substrate molecule than glucose oxidation. Upon ischemia-reperfusion damage, the innate and adaptive immune system activates to achieve tissue clearance and repair. Several cells, cytokines, enzymes, receptors, and ligands are known to take part in these events. The complement cascade might start even before organ procurement in deceased donors. However, additional experimental and clinical data are required to better understand the pathogenic events that take place during this complex process.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio d’Amati
- Department of Precision and Regenerative Medicine and Ionian Area-Pathology Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Felice Crocetto
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
- Department of Urology, University of L’Aquila, 67010 L’Aquila, Italy
| | - Biagio Barone
- Division of Urology, Department of Surgical Sciences, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 71013 Milan, Italy
| | - Marco Spilotros
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Michele Battaglia
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
6
|
Gibson B, Connelly C, Moldakhmetova S, Sheerin NS. Complement activation and kidney transplantation; a complex relationship. Immunobiology 2023; 228:152396. [PMID: 37276614 DOI: 10.1016/j.imbio.2023.152396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023]
Abstract
Although kidney transplantation is the best treatment for end stage kidney disease, the benefits are limited by factors such as the short fall in donor numbers, the burden of immunosuppression and graft failure. Although there have been improvements in one-year outcomes, the annual rate of graft loss beyond the first year has not significantly improved, despite better therapies to control the alloimmune response. There is therefore a need to develop alternative strategies to limit kidney injury at all stages along the transplant pathway and so improve graft survival. Complement is primarily part of the innate immune system, but is also known to enhance the adaptive immune response. There is increasing evidence that complement activation occurs at many stages during transplantation and can have deleterious effects on graft outcome. Complement activation begins in the donor and occurs again on reperfusion following a period of ischemia. Complement can contribute to the development of the alloimmune response and may directly contribute to graft injury during acute and chronic allograft rejection. The complexity of the relationship between complement activation and allograft outcome is further increased by the capacity of the allograft to synthesise complement proteins, the contribution complement makes to interstitial fibrosis and complement's role in the development of recurrent disease. The better we understand the role played by complement in kidney transplant pathology the better placed we will be to intervene. This is particularly relevant with the rapid development of complement therapeutics which can now target different the different pathways of the complement system. Combining our basic understanding of complement biology with preclinical and observational data will allow the development and delivery of clinical trials which have best chance to identify any benefit of complement inhibition.
Collapse
Affiliation(s)
- B Gibson
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - C Connelly
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - S Moldakhmetova
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - N S Sheerin
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
7
|
Santarsiero D, Aiello S. The Complement System in Kidney Transplantation. Cells 2023; 12:cells12050791. [PMID: 36899927 PMCID: PMC10001167 DOI: 10.3390/cells12050791] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Kidney transplantation is the therapy of choice for patients who suffer from end-stage renal diseases. Despite improvements in surgical techniques and immunosuppressive treatments, long-term graft survival remains a challenge. A large body of evidence documented that the complement cascade, a part of the innate immune system, plays a crucial role in the deleterious inflammatory reactions that occur during the transplantation process, such as brain or cardiac death of the donor and ischaemia/reperfusion injury. In addition, the complement system also modulates the responses of T cells and B cells to alloantigens, thus playing a crucial role in cellular as well as humoral responses to the allograft, which lead to damage to the transplanted kidney. Since several drugs that are capable of inhibiting complement activation at various stages of the complement cascade are emerging and being developed, we will discuss how these novel therapies could have potential applications in ameliorating outcomes in kidney transplantations by preventing the deleterious effects of ischaemia/reperfusion injury, modulating the adaptive immune response, and treating antibody-mediated rejection.
Collapse
|
8
|
Jager NM, Venema LH, Arykbaeva AS, Meter-Arkema AH, Ottens PJ, van Kooten C, Mollnes TE, Alwayn IPJ, Leuvenink HGD, Pischke SE, PROPER study consortium. Complement Is Activated During Normothermic Machine Perfusion of Porcine and Human Discarded Kidneys. Front Immunol 2022; 13:831371. [PMID: 35911712 PMCID: PMC9327788 DOI: 10.3389/fimmu.2022.831371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background The gap between demand and supply of kidneys for transplantation necessitates the use of kidneys from extended criteria donors. Transplantation of these donor kidneys is associated with inferior results, reflected by an increased risk of delayed graft function. Inferior results might be explained by the higher immunogenicity of extended criteria donor kidneys. Normothermic machine perfusion (NMP) could be used as a platform to assess the quality and function of donor kidneys. In addition, it could be useful to evaluate and possibly alter the immunological response of donor kidneys. In this study, we first evaluated whether complement was activated during NMP of porcine and human discarded kidneys. Second, we examined the relationship between complement activation and pro-inflammatory cytokines during NMP. Third, we assessed the effect of complement activation on renal function and injury during NMP of porcine kidneys. Lastly, we examined local complement C3d deposition in human renal biopsies after NMP. Methods NMP with a blood-based perfusion was performed with both porcine and discarded human kidneys for 4 and 6 h, respectively. Perfusate samples were taken every hour to assess complement activation, pro-inflammatory cytokines and renal function. Biopsies were taken to assess histological injury and complement deposition. Results Complement activation products C3a, C3d, and soluble C5b-9 (sC5b-9) were found in perfusate samples taken during NMP of both porcine and human kidneys. In addition, complement perfusate levels positively correlated with the cytokine perfusate levels of IL-6, IL-8, and TNF during NMP of porcine kidneys. Porcine kidneys with high sC5b-9 perfusate levels had significantly lower creatinine clearance after 4 h of NMP. In line with these findings, high complement perfusate levels were seen during NMP of human discarded kidneys. In addition, kidneys retrieved from brain-dead donors had significantly higher complement perfusate levels during NMP than kidneys retrieved from donors after circulatory death. Conclusion Normothermic kidney machine perfusion induces complement activation in porcine and human kidneys, which is associated with the release of pro-inflammatory cytokines and in porcine kidneys with lower creatinine clearance. Complement inhibition during NMP might be a promising strategy to reduce renal graft injury and improve graft function prior to transplantation.
Collapse
Affiliation(s)
- Neeltina M. Jager
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Leonie H. Venema
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Asel S. Arykbaeva
- LUMC Transplant Center, Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Anita H. Meter-Arkema
- Department of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Petra J. Ottens
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Cees van Kooten
- LUMC Transplant Center, Department of Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Tom E. Mollnes
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ian P. J. Alwayn
- LUMC Transplant Center, Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | | | - Soeren E. Pischke
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Anaesthesiology and Intensive Care, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
9
|
Bera KD, Shah A, English MR, Ploeg R. Outcome measures in solid organ donor management research: a systematic review. Br J Anaesth 2021; 127:745-759. [PMID: 34420684 DOI: 10.1016/j.bja.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
AIM We systematically reviewed published outcome measures across randomised controlled trials (RCTs) of donor management interventions. METHODS The systematic review was conducted in accordance with recommendations by the Cochrane Handbook and Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. We searched MEDLINE, Embase, CENTRAL, Web of Science, and trial databases from 1980 to February 2021 for RCTs of donor management interventions. RESULTS Twenty-two RCTs (n=3432 donors) were included in our analysis. Fourteen RCTs (63.6%) reported a primary outcome relating to a single organ only. Eight RCTs primarily focused on aspects of donor optimisation in critical care. Thyroid hormones and methylprednisolone were the most commonly evaluated interventions (five and four studies, respectively). Only two studies, focusing on single organs (e.g. kidney), evaluated outcomes relating to other organs. The majority of studies evaluated physiological or biomarker-related outcomes. No study evaluated recipient health-related quality of life. Only one study sought consent from potential organ recipients. CONCLUSIONS The majority of RCTs evaluating donor management interventions only assessed single-organ outcomes or effects on donor stability in critical care. There is a need for an evaluation of patient-centred recipient outcomes and standardisation and reporting of outcome measures for future donor management RCTs.
Collapse
Affiliation(s)
- Kasia D Bera
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, Churchill Hospital, Oxford, UK; Vascular Surgery Department, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Akshay Shah
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Adult Intensive Care Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Rex English
- Oxford Medical School, University of Oxford, Oxford, UK
| | - Rutger Ploeg
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, Churchill Hospital, Oxford, UK
| |
Collapse
|
10
|
Multiplex gene analysis reveals T-cell and antibody-mediated rejection-specific upregulation of complement in renal transplants. Sci Rep 2021; 11:15464. [PMID: 34326417 PMCID: PMC8322413 DOI: 10.1038/s41598-021-94954-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
In renal transplantation, complement is involved in ischemia reperfusion injury, graft rejection and dysfunction. However, it is still unclear how induction of complement and its activation are initiated. Using allograft biopsies of a well-characterized cohort of 28 renal transplant patients with no rejection (Ctrl), delayed graft function (DGF), acute T-cell-mediated (TCMR) or antibody-mediated rejection (ABMR) we analyzed differences in complement reaction. For that mRNA was isolated from FFPE sections, quantified with a multiplex gene expression panel and correlated with transplant conditions and follow-up of patients. Additionally, inflammatory cells were quantified by multiplex immunohistochemistry. In allograft biopsies with TCMR and ABMR gene expression of C1QB was 2-4 fold elevated compared to Ctrl. In TCMR biopsies, mRNA counts of several complement-related genes including C1S, C3, CFB and complement regulators CFH, CR1 and SERPING1 were significantly increased compared to Ctrl. Interestingly, expression levels of about 75% of the analyzed complement related genes correlated with cold ischemia time (CIT) and markers of inflammation. In conclusion, this study suggest an important role of complement in transplant pathology which seems to be at least in part triggered by CIT. Multiplex mRNA analysis might be a useful method to refine diagnosis and explore new pathways involved in rejection.
Collapse
|
11
|
Bera KD, Shah A, English MR, Harvey D, Ploeg RJ. Optimisation of the organ donor and effects on transplanted organs: a narrative review on current practice and future directions. Anaesthesia 2020; 75:1191-1204. [PMID: 32430910 DOI: 10.1111/anae.15037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Mortality remains high for patients on the waiting list for organ transplantation. A marked imbalance between the number of available organs and recipients that need to be transplanted persists. Organs from deceased donors are often declined due to perceived and actual suboptimal quality. Adequate donor management offers an opportunity to reduce organ injury and maximise the number of organs than can be offered in order to respect the donor's altruistic gift. The cornerstones of management include: correction of hypovolaemia; maintenance of organ perfusion; prompt treatment of diabetes insipidus; corticosteroid therapy; and lung protective ventilation. The interventions used to deliver these goals are largely based on pathophysiological rationale or extrapolations from general critical care patients. There is currently insufficient high-quality evidence that has assessed whether any interventions in the donor after brain death may actually improve immediate post-transplant function and long-term graft survival or recipient survival after transplantation. Improvements in our understanding of the underlying mechanisms following brain death, in particular the role of immunological and metabolic changes in donors, offer promising future therapeutic opportunities to increase organ utilisation. Establishing a UK donor management research programme involves consideration of ethical, logistical and legal issues that will benefit transplanted patients while respecting the wishes of donors and their families.
Collapse
Affiliation(s)
- K D Bera
- Oxford Biomedical Research Centre and Oxford University Hospital NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - A Shah
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,Nuffield Department of Anaesthesia, John Radcliffe Hospital, Oxford, UK
| | - M R English
- University of Oxford Medical School, Oxford, UK
| | - D Harvey
- Department of Intensive Care Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - R J Ploeg
- Nuffield Department of Surgical Sciences and Oxford Biomedical Research Centre, University of Oxford, UK
| |
Collapse
|