1
|
Wang H, Liu Y, Yang L, Wang Z, Hou Q, Zhang J, Huang W, Ma D, Liu Y. Differential roles of IL-17B and IL-17RB in colorectal cancer: Correlation with immune infiltration and prognosis. Pathol Res Pract 2025; 268:155847. [PMID: 40020328 DOI: 10.1016/j.prp.2025.155847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND The aim of the research is to investigate correlation of immune infiltration between IL-17B and IL-17RB in colorectal cancer (CRC), then provide an experimental basis for clinical diagnostic marker screening of CRC. METHODS Gene expression levels were assessed via TIMER and GEPIA databases, protein expression through the Human Protein Atlas (HPA), clinicopathological correlations and prognosis via UALCAN and KM-Plotter, respectively. Mutation analysis was conducted using cBioPortal, immune cell infiltration via TIMER, and hub genes were identified through protein-protein interaction (PPI) networks. Biological functions and pathways were elucidated with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, the expression of IL-17B, IL-17RB, and associated inflammatory cells in CRC were analyzed using immunohistochemical staining and special staining technique. RESULTS Bioinformatics analysis showed that IL-17B gene and protein expression levels decreased, while IL-17RB expression increased in CRC. IL-17B expression was affected by gender, body weight, histology, lymph node status, and tumour grade. Overexpression of IL-17B was negatively correlated with progression-free survival in CRC. IL-17B is involved in phosphatidylinositol 3-kinase/AKT signaling, vascular development, and other processes. IL-17B is associated with mitochondrial gene expression, regulation of mRNA metabolism, amino acid metabolism and other processes, as well as phosphatidylinositol-binding and liganding. Inositol 3-kinase/AKT signalling and vascular development. IL-17B was negatively correlated with mitochondrial gene expression, regulation of mRNA metabolism, amino acid metabolism and other processes as well as with molecular functions such as phosphatidylinositol binding and ligase activity. IL-17RB expression was correlated with the clinicopathological features described above and decreased with tumour progression. High levels of IL-17RB were associated with improved overall survival and immune cell infiltration. The key genes of IL-17RB are mainly involved in DNA damage, metabolism, checkpoint signaling and regulation of replication. Immunohistochemical staining results showed that the expression of IL-17B and IL-17RB reduced in CRC, compared to normal colon tissue (p < 0.05). IL-17B was positively correlated with CD4+ T lymphocyte and mast cell infiltration. IL-17RB was positively correlated with CD4+ T lymphocyte infiltration and negatively correlated with CD20+ B lymphocyte infiltration. CONCLUSION The expression of IL-17RB in CRC decreased with increasing tumour stage, and high levels of IL-17RB predicted a better prognosis, suggesting that its decreased expression was associated with disease progression. Therefore, IL-17RB may be a biomarker for assessing the prognosis of CRC. Meanwhile, IL-17B was positively correlated with CD4+ T lymphocyte and mast cell infiltration, and its overexpression was negatively correlated with recurrence-free survival, IL-17B and IL-17RB may affect CRC through different pathway mechanisms.
Collapse
Affiliation(s)
- Han Wang
- School of Basic Medical College, Beihua University, Jilin 132013, China.
| | - Yuqi Liu
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Lijuan Yang
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Zhenjiang Wang
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Qinlong Hou
- School of Basic Medical College, Beihua University, Jilin 132013, China
| | - Jihong Zhang
- The Affiliated Hospital of Beihua University, Jilin 132013, China
| | - Weili Huang
- The Affiliated Hospital of Beihua University, Jilin 132013, China
| | - Dongrui Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Yanbo Liu
- School of Basic Medical College, Beihua University, Jilin 132013, China.
| |
Collapse
|
2
|
Wang X, Bao H, Wang Y, Wang Y, Guo C, Wu Y, Xu Y, Li Y. Innovative peptide therapeutics targeting IL17RA to regulate inflammatory responses. Sci Rep 2025; 15:8542. [PMID: 40121226 PMCID: PMC11929782 DOI: 10.1038/s41598-025-92915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Interleukin-17 receptor A (IL17RA) is a critical mediator of pro-inflammatory cytokine signaling and a key immune checkpoint in autoimmune diseases. While monoclonal antibodies targeting IL17RA have demonstrated clinical efficacy, their high costs, complexity in production, and lack of oral bioavailability present significant limitations. In response to these challenges, we developed AL-8(0), a novel peptide specifically designed to inhibit the IL17A-IL17RA signaling pathway. AL-8(0) was synthesized with high purity and systematically evaluated for its binding affinity and anti-inflammatory activity. Biophysical and cellular assays confirmed the peptide's strong affinity for IL17RA and its ability to inhibit inflammatory cytokine production in IL17RA-expressing monocyte-macrophages and keratinocytes. Moreover, its anti-inflammatory effects were com-parable to IL17RA-targeting monoclonal antibodies and were dependent on IL17RA expression, as demonstrated by experiments using IL17RA-deficient cells. These results underscore AL-8(0)'s potential as a targeted therapeutic for autoimmune diseases, offering a peptide-based alternative with lower antigenicity, improved scalability, and potential for oral administration. This study lays the groundwork for further development of AL-8(0) and similar peptides as innovative treatments for inflammatory disorders driven by the IL17A-IL17RA pathway.
Collapse
Affiliation(s)
- Xinmin Wang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Hang Bao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yuya Wang
- Inner Mongolia Autonomous Region People's Hospital, Hohhot, 010010, China
| | - Yalu Wang
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Cheng Guo
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yanning Wu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yongbin Xu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yali Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
| |
Collapse
|
3
|
Begagic E, Vranic S, Sominanda A. The role of interleukin 17 in cancer: a systematic review. Carcinogenesis 2025; 46:bgae079. [PMID: 39673782 DOI: 10.1093/carcin/bgae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/16/2024] Open
Abstract
Interleukin 17 (IL17) is a cytokine involved in immune regulation and has been increasingly recognized for its role in cancer progression. This systematic review aims to integrate data on IL17's role in various tumors to better understand its implications for cancer prognosis and treatment. The review included 105 studies (27.6% experimental and 72.4% clinical). Clinical studies involved 9266 patients: 31.2% males, 60.0% females, and 8.8% with undefined gender. IL17A and IL17 were the most studied subtypes (36.2% and 33.3%, respectively). Breast cancer (26.7%), colorectal carcinoma (13.3%), and hematologic malignancies (10.5%) were the most researched neoplasms. IL17A promoted tumor growth in breast cancer and correlated with poor outcomes in colorectal, breast, and lung cancers. IL17 also played a significant role in immune modulation in gliomas and other tumors. IL17A significantly influences tumor growth and prognosis across various cancers, with notable roles in immune modulation and poor outcomes in multiple cancer types.
Collapse
Affiliation(s)
- Emir Begagic
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Semir Vranic
- Department of Pathology, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ajith Sominanda
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| |
Collapse
|
4
|
Boschiero C, Beshah E, Zhu X, Tuo W, Liu GE. Profiling Genome-Wide Methylation Patterns in Cattle Infected with Ostertagia ostertagi. Int J Mol Sci 2024; 26:89. [PMID: 39795948 PMCID: PMC11719486 DOI: 10.3390/ijms26010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/13/2025] Open
Abstract
DNA methylation (DNAm) regulates gene expression and genomic imprinting. This study aimed to investigate the effect of gastrointestinal (GI) nematode infection on host DNAm. Helminth-free Holstein steers were either infected with Ostertagia ostertagi (the brown stomach worm) or given tap water only as a control. Animals were euthanized 30 days post-infection, and tissues were collected at necropsy. We conducted epigenome-wide profiling using a mammalian methylation array to explore the impact of infection on methylation patterns in the mucosa from abomasal fundus (FUN), pylorus (PYL), draining lymph nodes (dLNs), and the duodenum (DUO). The analysis covered 31,107 cattle CpGs of 5082 genes and revealed infection-driven, tissue-specific, differential methylation patterns. A total of 389 shared and 2770 tissue-specific, differentially methylated positions (DMPs) were identified in dLN and FUN, particularly in genes associated with immune responses. The shared DMPs were found in 263 genes, many of which are involved in immune responses. Furthermore, 282, 244, 52, and 24 differentially methylated regions (DMRs) were observed in dLN, FUN, PYL, and DUO, respectively. More hypomethylated DMRs were detected in dLN and FUN, while more hypermethylated DMRs were found in PYL and DUO. Genes carrying DMPs and DMRs and enriched pathways relating to immune functions/responses were detected in infected animals, indicating a link between DNA methylation and the infection. The data may implicate a crucial role of DNAm in regulating the nature/strength of host immunity to infection and contribute to a deeper understanding of the epigenetic regulatory landscape in cattle infected by GI nematodes.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Ethiopia Beshah
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Xiaoping Zhu
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
5
|
Wang X, Huang W, Sun H, Wang H, Wang D, Wang Y. Tomatidine relieves neuronal damage in spinal cord injury by inhibiting the inflammatory responses and apoptosis through blocking the NF-κB/CXCL10 pathway activation. Front Pharmacol 2024; 15:1503925. [PMID: 39726790 PMCID: PMC11669516 DOI: 10.3389/fphar.2024.1503925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Background Spinal cord injury (SCI) is a neurological disease characterized by high disability and mortality rates. Tomatidine, a natural steroid alkaloid, has been evidenced to have neuroprotective properties. However, the underlying mechanisms of tomatidine in treating SCI remain ambiguous. This study aimed to illustrate the molecular mechanisms of tomatidine in modulating the inflammatory response and promoting functional rehabilitation after SCI. Methods Sprague-Dawley (SD) rats were used to construct an in vivo SCI model and were intraperitoneally injected with tomatidine (5, 10, or 20 mg/kg) for 7 days, followed by treatment with the nuclear factor-κB (NF-κB) pathway agonist (PMA). In addition, lipopolysaccharide (LPS)-induced PC-12 cells were used to establish an SCI cell model and were stimulated with tomatidine, PMA, or a CXCL10 inhibitor. The pathophysiological changes and neurological function were evaluated using blood-brain barrier (BBB) scoring, water content determination, hematoxylin and eosin (H&E) staining, and TUNEL assay. Levels of inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, were measured. Cell proliferation, apoptosis, and the expression of C-X-C motif chemokine ligand 10 (CXCL10) were determined. Moreover, the expression of cleaved-caspase 3, caspase 3, CXCL10, p-p65, and p65 were analyzed. Results Our data revealed that tomatidine promoted neuronal damage recovery, reduced histopathological changes, elevated cell proliferation, and inhibited the apoptosis and inflammatory factor levels in spinal cord tissues and LPS-induced PC-12 cells. Moreover, tomatidine decreased the expression of CXCL10 in vitro and in vivo, which was accompanied by the regulation of the NF-κB pathway. However, the NF-κB pathway agonist PMA reversed the protective effect of tomatidine in vitro. PMA also enhanced the CXCL10 expression and stimulated the activation of the NF-κB pathway, as demonstrated by the upregulation of phosphorylated p65. The CXCL10 inhibitor had effects similar to tomatidine on cleaved-caspase 3 expression, CXCL10 expression, and the NF-κB pathway. Conclusion Tomatidine can alleviate neuronal damage in SCI by inhibiting apoptosis and inflammation through the NF-κB/CXCL10 pathway. Our findings provide a novel therapeutic target and candidate for the treatment of SCI.
Collapse
Affiliation(s)
- Xu Wang
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China
- Department of Trauma Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Wei Huang
- Health Management Center, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Hao Sun
- Department of Trauma Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Hua Wang
- Department of Trauma Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yongxiang Wang
- The Yangzhou School of Clinical Medicine of Nanjing Medical University, Yangzhou, China
- Department of Trauma Surgery, Northern Jiangsu People’s Hospital, Yangzhou, China
| |
Collapse
|
6
|
Dzierżyński E, Gawlik PJ, Puźniak D, Flieger W, Jóźwik K, Teresiński G, Forma A, Wdowiak P, Baj J, Flieger J. Microplastics in the Human Body: Exposure, Detection, and Risk of Carcinogenesis: A State-of-the-Art Review. Cancers (Basel) 2024; 16:3703. [PMID: 39518141 PMCID: PMC11545399 DOI: 10.3390/cancers16213703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Humans cannot avoid plastic exposure due to its ubiquitous presence in the natural environment. The waste generated is poorly biodegradable and exists in the form of MPs, which can enter the human body primarily through the digestive tract, respiratory tract, or damaged skin and accumulate in various tissues by crossing biological membrane barriers. There is an increasing amount of research on the health effects of MPs. Most literature reports focus on the impact of plastics on the respiratory, digestive, reproductive, hormonal, nervous, and immune systems, as well as the metabolic effects of MPs accumulation leading to epidemics of obesity, diabetes, hypertension, and non-alcoholic fatty liver disease. MPs, as xenobiotics, undergo ADMET processes in the body, i.e., absorption, distribution, metabolism, and excretion, which are not fully understood. Of particular concern are the carcinogenic chemicals added to plastics during manufacturing or adsorbed from the environment, such as chlorinated paraffins, phthalates, phenols, and bisphenols, which can be released when absorbed by the body. The continuous increase in NMP exposure has accelerated during the SARS-CoV-2 pandemic when there was a need to use single-use plastic products in daily life. Therefore, there is an urgent need to diagnose problems related to the health effects of MP exposure and detection. Methods: We collected eligible publications mainly from PubMed published between 2017 and 2024. Results: In this review, we summarize the current knowledge on potential sources and routes of exposure, translocation pathways, identification methods, and carcinogenic potential confirmed by in vitro and in vivo studies. Additionally, we discuss the limitations of studies such as contamination during sample preparation and instrumental limitations constraints affecting imaging quality and MPs detection sensitivity. Conclusions: The assessment of MP content in samples should be performed according to the appropriate procedure and analytical technique to ensure Quality and Control (QA/QC). It was confirmed that MPs can be absorbed and accumulated in distant tissues, leading to an inflammatory response and initiation of signaling pathways responsible for malignant transformation.
Collapse
Affiliation(s)
- Eliasz Dzierżyński
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Piotr J. Gawlik
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Damian Puźniak
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
| | - Wojciech Flieger
- St. John’s Cancer Center, Department of Plastic Surgery, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (E.D.)
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
- Doctoral School, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland
| | - Katarzyna Jóźwik
- Department of Neurosurgery and Paediatric Neurosurgery, ul. Jaczewskiego 8, 20-090 Lublin, Poland
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (G.T.)
| | - Paulina Wdowiak
- Institute of Medical Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a (Collegium Pharmaceuticum), 20-093 Lublin, Poland
| |
Collapse
|
7
|
Liu W, Wang X, Wu W. Role and functional mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer (Review). Oncol Rep 2024; 52:144. [PMID: 39219271 PMCID: PMC11378154 DOI: 10.3892/or.2024.8803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Interleukin‑17 (IL‑17), an inflammatory cytokine primarily secreted by T helper 17 cells, serves a crucial role in numerous inflammatory diseases and malignancies via its receptor, IL‑17R. In addition to stimulating inflammatory responses, IL‑17 exhibits dual functions in tumors, exerting both pro‑ and antitumor effects. Pancreatic ductal adenocarcinoma (PDAC) is the most common pancreatic malignancy and accounts for >90% of pancreatic cancer cases. PDAC is characterized by a prominent stromal microenvironment with significant heterogeneity, which contributes to treatment resistance. IL‑17/IL‑17R signaling has a notable effect on tumorigenesis, the tumor microenvironment and treatment efficacy in various cancer types, including PDAC. However, the specific mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer remain uncertain. This review presents a brief overview of the current knowledge and recent advances in the role and functional mechanisms of IL‑17/IL‑17R signaling in pancreatic cancer. Furthermore, the potential of IL‑17‑targeted therapeutic strategies for PDAC treatment is also discussed.
Collapse
Affiliation(s)
- Wanli Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Xianze Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
8
|
Santi MD, Zhang M, Asam K, Yu G, Dong PM, Sheehan DH, Aouizerat BE, Thomas CM, Viet CT, Ye Y. Perineural Invasion Is Associated With Function-evoked Pain and Altered Extracellular Matrix in Patients With Head and Neck Squamous Cell Carcinoma. THE JOURNAL OF PAIN 2024; 25:104615. [PMID: 38936749 DOI: 10.1016/j.jpain.2024.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is painful, and perineural invasion (PNI) has been associated with the worst pain. Pain due to HNSCC is diverse and may vary based on clinicopathological factors. This study aims to characterize different pain patterns linked with PNI, its influence on daily functioning, and gain insights into molecular changes and pathways associated with PNI-related pain in HNSCC patients. We conducted a cross-sectional study across 3 medical centers (n = 114), assessing pain phenotypes and their impact on daily functioning using 2 self-reported pain questionnaires, given to patients prior to their cancer surgery. Furthermore, we conducted RNA-seq analysis utilizing the The Cancer Genome Atlas dataset of HNSCC tumor from patients (n = 192) to identify genes relevant to both PNI and pain. Upon adjusting for demographic and clinicopathological variables using linear regression models, we found that PNI independently predicted function-evoked pain according to the University of Calfornia San Francisco Oral Cancer Pain Questionnaire, as well as the worst pain intensity reported in the Brief Pain Inventory. Distinct pain patterns were observed to be associated with daily activities in varying manners. Our molecular analyses revealed significant disruptions in pathways associated with the extracellular matrix structure and organization. The top differentially expressed genes linked to the extracellular matrix are implicated in cancer development, pain, and neurodegenerative diseases. Our data underscore the importance of properly categorizing pain phenotypes in future studies aiming to uncover mechanistic underpinnings of pain. Additionally, we have compiled a list of genes of interest that could serve as targets for both cancer and cancer pain management. PERSPECTIVE: PNI independently predicts function-evoked pain. Different pain phenotypes affect daily activities differently. We identified a list of candidate genes involved in the extracellular matrix structure and function that can be targeted for both cancer and cancer pain control.
Collapse
Affiliation(s)
- Maria D Santi
- Translational Research Center, College of Dentistry, New York University, New York, New York; Department of Molecular Pathobiology, Pain Research Center, College of Dentistry, New York University, New York, New York
| | - Morgan Zhang
- Translational Research Center, College of Dentistry, New York University, New York, New York; Department of Molecular Pathobiology, Pain Research Center, College of Dentistry, New York University, New York, New York
| | - Kesava Asam
- Translational Research Center, College of Dentistry, New York University, New York, New York
| | - Gary Yu
- Rory Meyers College of Nursing, New York University, New York, New York
| | - Phuong M Dong
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, California
| | - Delaney H Sheehan
- Department of Otolaryngology - Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bradley E Aouizerat
- Translational Research Center, College of Dentistry, New York University, New York, New York
| | - Carissa M Thomas
- Department of Otolaryngology - Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Chi T Viet
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, California
| | - Yi Ye
- Translational Research Center, College of Dentistry, New York University, New York, New York; Department of Molecular Pathobiology, Pain Research Center, College of Dentistry, New York University, New York, New York.
| |
Collapse
|
9
|
Tian H, Ge K, Wang L, Gao P, Chen A, Wang F, Guo F, Wang F, Zhang Q. Advances in PGD2/PTGDR2 signaling pathway in tumors: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:1055-1067. [PMID: 38704736 PMCID: PMC11378995 DOI: 10.17305/bb.2024.10485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Studies have shown that the prostaglandin (PG) family acts as an allergic inflammatory mediator in malignant diseases. Furthermore, prostaglandin E2 (PGE2) and its related receptors, as well as the prostaglandin D2 (PGD2)/PGD2 receptor (PTGDR2), play irreplaceable roles in tumorigenesis and anti-tumor therapy. Several experiments have demonstrated that PGD2 signaling through PTGDR2 not only directly inhibits cancer cell survival, proliferation, and migration but also reduces resistance toward conventional chemotherapeutic agents. Recent studies from our and other laboratories have shown that PGD2, its ligands, and related metabolites can significantly alter the tumor microenvironment (TME) by promoting the secretion of chemokines and cytokines, thereby inhibiting tumor progression. Additionally, reduced PGD2 expression has been associated with poor prognosis in patients with gastric, breast, lung, and pancreatic cancers, validating the preclinical findings and their clinical relevance. This review focuses on the current understanding of PGD2/PTGDR2 expression patterns and biological activity in cancer, proposing questions to guide the assessment of PGD2 and its receptors as potential targets for effective cancer therapies.
Collapse
Affiliation(s)
- Hengjin Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Kunpeng Ge
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Lulu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Peiyao Gao
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Amin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Feifan Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fangzheng Guo
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, China
| | - FengChao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
10
|
Kong B, Lai Y. IL-17 family cytokines in inflammatory or autoimmune skin diseases. Adv Immunol 2024; 163:21-49. [PMID: 39271258 DOI: 10.1016/bs.ai.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
As potent pro-inflammatory mediators, IL-17 family cytokines play crucial roles in the pathogenesis of various inflammatory and autoimmune skin disorders. Although substantial progress has been achieved in understanding the pivotal role of IL-17A signaling in psoriasis, leading to the development of highly effective biologics, the functions of other IL-17 family members in inflammatory or autoimmune skin diseases remain less explored. In this review, we provide a comprehensive overview of IL-17 family cytokines and their receptors, with a particular focus on the recent advancements in identifying cellular sources, receptors and signaling pathways regulated by these cytokines. At the end, we discuss how the aberrant functions of IL-17 family cytokines contribute to the pathogenesis of diverse inflammatory or autoimmune skin diseases.
Collapse
Affiliation(s)
- Baida Kong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, P.R. China
| | - Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, School of Life Sciences, East China Normal University, Shanghai, P.R. China.
| |
Collapse
|
11
|
Garrone O, Paccagnella M, Abbona A, Ruatta F, Vanella P, Denaro N, Tomasello G, Croce N, Barbin F, Rossino MG, La Porta CAM, Sapino A, Torri V, Albini A, Merlano MC. Moderate physical activity during neoadjuvant chemotherapy in breast cancer patients: effect on cancer-related inflammation and pathological complete response-the Neo-Runner study. ESMO Open 2024; 9:103665. [PMID: 39121813 PMCID: PMC11364046 DOI: 10.1016/j.esmoop.2024.103665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Physical activity (PA) reduces the risk of developing breast cancer (BC) and mortality rate in BC patients starting PA after diagnosis. Immunomodulation is considered responsible for these effects. However, limited data exist on the immunomodulation induced by moderate PA (mPA) during neoadjuvant chemotherapy (NACT). We have investigated the longitudinal change of cytokines during NACT alone or combined with mPA. MATERIALS AND METHODS Twenty-three cytokines were analyzed in BC patients at consecutive timepoints: at baseline (T0), before starting mPA (T1), before surgery (T2), and after surgery (T3). mPA consisted of 3-weekly brisk-walking sessions for 9-10 consecutive weeks. RESULTS Ninety-two patients were assessed: 21 patients refused mPA (untrained) and 71 agreed (trained). At T1, NACT induced significant up-regulation of interleukin (IL)-5, IL-6, IL-15, chemokine ligand (CCL)-2, interferon-γ, and C-X-C motif ligand (CXCL)-10 and reduction of expression of IL-13 and CCL-22. At T2, NACT and mPA induced up-regulation of IL-21, CCL-2, and tumor necrosis factor-α and reduction of expression of IL-8, IL-15, vascular endothelial growth factor, and soluble interleukin 6 receptor. Only CXCL-10 increased in untrained patients. A cytokine score (CS) was created to analyze, all together, the changes between T1 and T2. At T2 the CS decreased in trained and increased in untrained patients. We clustered the patients using cytokines and predictive factors and identified two clusters. The cluster A, encompassing 90% of trained patients, showed more pathological complete response (pCR) compared to the cluster B: 78% versus 22%, respectively. CONCLUSIONS mPA interacts with NACT inducing CS reduction in trained patients not observed in untrained patients, suggesting a reduction of inflammation, notwithstanding chemotherapy. This effect may contribute to the higher rate of pCR observed in the cluster A, including most trained patients.
Collapse
Affiliation(s)
- O Garrone
- Department of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan.
| | - M Paccagnella
- Translational Oncology ARCO Foundation, Cuneo. https://twitter.com/matteo_babeuf
| | - A Abbona
- Translational Oncology ARCO Foundation, Cuneo. https://twitter.com/AbbonaAndr36863
| | - F Ruatta
- Department of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan. https://twitter.com/fiorella_ruatta
| | - P Vanella
- Department of Medical Oncology, S. Croce e Carle Teaching Hospital, Cuneo
| | - N Denaro
- Department of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan
| | - G Tomasello
- Medical Oncology, ASST Ospedale Maggiore Crema, Crema. https://twitter.com/glucatom
| | - N Croce
- Department of Medical Oncology, S. Croce e Carle Teaching Hospital, Cuneo
| | - F Barbin
- Department of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan
| | - M G Rossino
- Department of Medical Oncology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan
| | - C A M La Porta
- Center for Complexity and Biosystems, University of Milan, Milan; Department of Environmental Science and Policy, University of Milan, Milan. https://twitter.com/CAMLaPorta
| | - A Sapino
- Scientific Direction, Candiolo Cancer Institute, FPO-IRCCS Candiolo, Turin; Department of Medical Science, University of Turin, Turin. https://twitter.com/sapino58
| | - V Torri
- Mario Negri Institute for Pharmacological Research, Milan. https://twitter.com/ValterTorri
| | - A Albini
- European Institute of Oncology, Milan, Italy. https://twitter.com/adrianaalbini1
| | - M C Merlano
- Scientific Direction, Candiolo Cancer Institute, FPO-IRCCS Candiolo, Turin
| |
Collapse
|
12
|
Fan M, Wang K, Pan D, Cao X, Li Z, He S, Xie S, You C, Gu Y, Li L. Radiomic analysis reveals diverse prognostic and molecular insights into the response of breast cancer to neoadjuvant chemotherapy: a multicohort study. J Transl Med 2024; 22:637. [PMID: 38978099 PMCID: PMC11232151 DOI: 10.1186/s12967-024-05487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Breast cancer patients exhibit various response patterns to neoadjuvant chemotherapy (NAC). However, it is uncertain whether diverse tumor response patterns to NAC in breast cancer patients can predict survival outcomes. We aimed to develop and validate radiomic signatures indicative of tumor shrinkage and therapeutic response for improved survival analysis. METHODS This retrospective, multicohort study included three datasets. The development dataset, consisting of preoperative and early NAC DCE-MRI data from 255 patients, was used to create an imaging signature-based multitask model for predicting tumor shrinkage patterns and pathological complete response (pCR). Patients were categorized as pCR, nonpCR with concentric shrinkage (CS), or nonpCR with non-CS, with prediction performance measured by the area under the curve (AUC). The prognostic validation dataset (n = 174) was used to assess the prognostic value of the imaging signatures for overall survival (OS) and recurrence-free survival (RFS) using a multivariate Cox model. The gene expression data (genomic validation dataset, n = 112) were analyzed to determine the biological basis of the response patterns. RESULTS The multitask learning model, utilizing 17 radiomic signatures, achieved AUCs of 0.886 for predicting tumor shrinkage and 0.760 for predicting pCR. Patients who achieved pCR had the best survival outcomes, while nonpCR patients with a CS pattern had better survival than non-CS patients did, with significant differences in OS and RFS (p = 0.00012 and p = 0.00063, respectively). Gene expression analysis highlighted the involvement of the IL-17 and estrogen signaling pathways in response variability. CONCLUSIONS Radiomic signatures effectively predict NAC response patterns in breast cancer patients and are associated with specific survival outcomes. The CS pattern in nonpCR patients indicates better survival.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Kailang Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Da Pan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xuan Cao
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Zhihao Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Songlin He
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China.
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
13
|
Johnston LA, Nagalla RR, Li M, Whitley SK. IL-17 Control of Cutaneous Immune Homeostasis. J Invest Dermatol 2024; 144:1208-1216. [PMID: 38678465 DOI: 10.1016/j.jid.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 05/01/2024]
Abstract
IL-17 is widely recognized for its roles in host defense and inflammatory disorders. However, it has become clear that IL-17 is also an essential regulator of barrier tissue physiology. Steady-state microbe sensing at the skin surface induces low-level IL-17 expression that enhances epithelial integrity and resists pathogens without causing overt inflammation. Recent reports describe novel protective roles for IL-17 in wound healing and counteracting physiologic stress; however, chronic amplification of these beneficial responses contributes to skin pathologies as diverse as fibrosis, cancer, and autoinflammation. In this paper, we discuss the context-specific roles of IL-17 in skin health and disease and therapeutic opportunities.
Collapse
Affiliation(s)
- Leah A Johnston
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raji R Nagalla
- Medical Scientist Training Program, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Mushi Li
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Sarah K Whitley
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; Autoimmune Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusettes, USA.
| |
Collapse
|
14
|
Huang P, Ning X, Kang M, Wang R. Ferroptosis-Related Genes Are Associated with Radioresistance and Immune Suppression in Head and Neck Cancer. Genet Test Mol Biomarkers 2024; 28:100-113. [PMID: 38478802 PMCID: PMC10979683 DOI: 10.1089/gtmb.2023.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024] Open
Abstract
Background: Ferroptosis is associated with tumor development; however, its contribution to radioresistant head and neck cancer (HNC) remains unclear. In this study, we used bioinformatics analysis and in vitro testing to explore ferroptosis-related genes associated with HNCs radiosensitivity. Materials and Methods: GSE9714, GSE90761, and The Cancer Genome Atlas (TCGA) datasets were searched to identify ferroptosis-related differentially expressed genes between radioresistant and radiosensitive HNCs or radiation-treated and nonradiation-treated HNCs. A protein-protein interaction analysis on identified hub genes was then performed. Receiver operating characteristic curves and Kaplan-Meier survival analysis were used to assess the diagnostic and prognostic potential of the hub genes. Cell counting kit-8, transwell assay, and flow cytometry were applied to examine the role of hub gene collagen type IV, alpha1 chain (COL4A1) on the proliferation, migration, invasion, and apoptosis of TU686 cells. Results: Hub genes MMP10, MMP1, COL4A1, IFI27, and INHBA showed diagnostic potential for HNC and were negatively correlated with overall survival and disease-free survival in the TCGA dataset. Also, IL-1B, IFI27, INHBA, and COL4A1 mRNA levels were significantly increased in TCGA patients with advanced clinical stages or receiving radiotherapy, whereas COL4A1, MMP10, and INHBA expressions were negatively correlated with immune infiltration. Furthermore, the knockdown of COL4A1 inhibited cell proliferation, migration, and invasion while promoting apoptosis in TU686 cells. Conclusion: Ferroptosis-related hub genes, such as COL4A1, are potential diagnostic and prognostic indicators as well as therapeutic targets for HNC.
Collapse
Affiliation(s)
- Ping Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Oncology, LiuZhou Traditional Chinese Medical Hospital Affiliated to Guangxi University of Chinese Medicine, Liuzhou, China
| | - Xuejian Ning
- Department of Oncology, LiuZhou Traditional Chinese Medical Hospital Affiliated to Guangxi University of Chinese Medicine, Liuzhou, China
| | - Min Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - RenSheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
15
|
Wang S, Wang L, Li H, Zhang J, Peng J, Cheng B, Song M, Hu Q. Correlation analysis of plasma lipid profiles and the prognosis of head and neck squamous cell carcinoma. Oral Dis 2024; 30:329-341. [PMID: 36444706 DOI: 10.1111/odi.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE This study aims to clarify whether blood lipid profiles are indicators of prognosis in patients with head and neck squamous cell carcinoma (HNSCC). METHODS This retrospective study included 512 T1/2N0M0 HNSCC patients. The correlation between blood lipid profiles and progression-free survival (PFS) and disease-specific survival (DSS) was analyzed by multivariate analysis. The data from TCGA was also analyzed to investigate the expression levels and prognostic values of different lipoprotein receptors essential for specific lipid uptake. RESULTS A high level of low-density lipoprotein cholesterol (LDL-C) indicated better PFS and DSS, and a low level of apolipoprotein A-I (Apo A-I) indicated better PFS, while a high level of apolipoprotein B (Apo B) indicated poorer PFS and DSS. The Apo A-I receptor gene SCARB1 was upregulated and associated with poor survival in HNSCC patients. Activation of SCARB1 was implicated in a series of tumor-promoting pathways. There was no significant correlation between the expression of LDL-C and Apo B-related receptors and prognosis. CONCLUSION A high level of LDL-C and a low level of Apo A-I are protective factors for HNSCC, while a high level of Apo B is a risk factor. The upregulation of SCARB1 may participate in the progression of HNSCC.
Collapse
Affiliation(s)
- Siyu Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Huan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiayu Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jianmin Peng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ming Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qinchao Hu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Dolatshahi M, Bahrami AR, Sheikh QI, Ghanbari M, Matin MM. Gastric cancer and mesenchymal stem cell-derived exosomes: from pro-tumorigenic effects to anti-cancer vehicles. Arch Pharm Res 2024; 47:1-19. [PMID: 38151649 DOI: 10.1007/s12272-023-01477-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies in the world, with a high mortality rate in both women and men. Conventional treatments, like chemotherapy, radiotherapy and surgery, are facing some drawbacks like acquired drug resistance and various side effects, leading to cancer recurrence and increased morbidity; thus, development of novel approaches in targeted therapy would be very beneficial. Exosomes, extracellular vesicles with a size distribution of sub-150 nm, interplay in physiological and pathophysiological cell-cell communications and can pave the way for targeted cancer therapy. Accumulating pieces of evidence have indicated that exosomes derived from mesenchymal stem cells (MSC-EXs) can act as a double-edged sword in some cancers. The purpose of this review is to assess the differences between stem cell therapy and exosome therapy. Moreover, our aim is to demonstrate how naïve MSCs transform into GC-MSCs in the tumor microenvironment. Additionally, the tumorigenic and anti-proliferation effects of MSC-EXs derived from different origins were investigated. Finally, we suggest potential modifications and combination options that involve utilizing MSC-EXs from the foreskin and umbilical cord as promising sources to enhance the efficacy of gastric cancer treatment. This approach is presented in contrast to bone marrow cells, which are more heterogeneous, age-related, and are also easily affected by the patient's circulation system.
Collapse
Affiliation(s)
- Maryam Dolatshahi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Qaiser Iftikhar Sheikh
- School of Biosciences, Western Bank, Firth Court, University of Sheffield, Sheffield, S10 2TN, England, UK
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
17
|
Sisto M, Lisi S. Targeting Interleukin-17 as a Novel Treatment Option for Fibrotic Diseases. J Clin Med 2023; 13:164. [PMID: 38202170 PMCID: PMC10780256 DOI: 10.3390/jcm13010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Fibrosis is the end result of persistent inflammatory responses induced by a variety of stimuli, including chronic infections, autoimmune reactions, and tissue injury. Fibrotic diseases affect all vital organs and are characterized by a high rate of morbidity and mortality in the developed world. Until recently, there were no approved antifibrotic therapies. In recent years, high levels of interleukin-17 (IL-17) have been associated with chronic inflammatory diseases with fibrotic complications that culminate in organ failure. In this review, we provide an update on the role of IL-17 in fibrotic diseases, with particular attention to the most recent lines of research in the therapeutic field represented by the epigenetic mechanisms that control IL-17 levels in fibrosis. A better knowledge of the IL-17 signaling pathway implications in fibrosis could design new strategies for therapeutic benefits.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | | |
Collapse
|
18
|
He J, Lei Y, Li X, Wu B, Tang Y. Exploring the prognostic value of S100A11 and its association with immune infiltration in breast cancer. Sci Rep 2023; 13:22922. [PMID: 38129538 PMCID: PMC10739898 DOI: 10.1038/s41598-023-50160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Breast cancer (BC) is a severe danger to women's lives and health globally. S100A11 is aberrantly expressed in many carcinomas and serves a crucial function in cancer development. However, the role of S100A11 in BC is unclear. In this study, we utilized multiple databases and online tools, including the TCGA database, cBioPortal, and STRING, to evaluate the significance of S100A11 in BC prognosis and immune infiltration. We found that S100A11 was considerably more abundant in BC tissues. Survival analysis indicated that individuals with S100A11 high expression of BC had shorter overall survival. Multivariate Cox regression analysis revealed that high S100A11 expression independently influenced the poor outcome of patients with BC (HR = 1.738, 95%CI 1.197-2.524). Our nomogram incorporating five factors, including S100A11, age, clinical stage, N, and M, was developed to anticipate the survival probability in BC prognosis. The model demonstrated good consistency and accuracy. Furthermore, the mutation rete of S100A11 was 14%. Survival analysis suggested that breast cancer patients with S100A11 mutation had a worse prognosis. KEGG pathway enrichment analysis revealed that S100A11 may be mainly involved in the IL-17 signaling pathway. Finally, we discovered a correlation between S100A11 expression and immune cell infiltration on BC. S100A11 expression was positively associated with 17 immune checkpoint-related genes. In conclusion, this study indicates that S100A11 may contribute to a worse prognosis for BC and potentially has a significant impact through its influence on immune cell infiltration and the IL-17 signaling pathway.
Collapse
Affiliation(s)
- Junfang He
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yuxi Lei
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiabin Li
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, 646000, Sichuan, China
| | - Bin Wu
- Departments of Breast Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Yan Tang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Institute of Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
19
|
Forston MD, Wei GZ, Chariker JH, Stephenson T, Andres K, Glover C, Rouchka EC, Whittemore SR, Hetman M. Enhanced oxidative phosphorylation, re-organized intracellular signaling, and epigenetic de-silencing as revealed by oligodendrocyte translatome analysis after contusive spinal cord injury. Sci Rep 2023; 13:21254. [PMID: 38040794 PMCID: PMC10692148 DOI: 10.1038/s41598-023-48425-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Reducing the loss of oligodendrocytes (OLs) is a major goal for neuroprotection after spinal cord injury (SCI). Therefore, the OL translatome was determined in Ribotag:Plp1-CreERT2 mice at 2, 10, and 42 days after moderate contusive T9 SCI. At 2 and 42 days, mitochondrial respiration- or actin cytoskeleton/cell junction/cell adhesion mRNAs were upregulated or downregulated, respectively. The latter effect suggests myelin sheath loss/morphological simplification which is consistent with downregulation of cholesterol biosynthesis transcripts on days 10 and 42. Various regulators of pro-survival-, cell death-, and/or oxidative stress response pathways showed peak expression acutely, on day 2. Many acutely upregulated OL genes are part of the repressive SUZ12/PRC2 operon suggesting that epigenetic de-silencing contributes to SCI effects on OL gene expression. Acute OL upregulation of the iron oxidoreductase Steap3 was confirmed at the protein level and replicated in cultured OLs treated with the mitochondrial uncoupler FCCP. Hence, STEAP3 upregulation may mark mitochondrial dysfunction. Taken together, in SCI-challenged OLs, acute and subchronic enhancement of mitochondrial respiration may be driven by axonal loss and subsequent myelin sheath degeneration. Acutely, the OL switch to oxidative phosphorylation may lead to oxidative stress that is further amplified by upregulation of such enzymes as STEAP3.
Collapse
Affiliation(s)
- Michael D Forston
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - George Z Wei
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Julia H Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
- Neuroscience Training, University Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Tyler Stephenson
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Kariena Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Charles Glover
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Eric C Rouchka
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
20
|
Zhang Z, Zhu Y. ANRGs impact on gastric cancer progression and drug efficacy: A comprehensive study. Medicine (Baltimore) 2023; 102:e34861. [PMID: 37904473 PMCID: PMC10615463 DOI: 10.1097/md.0000000000034861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/31/2023] [Indexed: 11/01/2023] Open
Abstract
Gastric cancer (GC) is a significant contributor to cancer-related mortality globally, with the heterogeneity of metastasis and treatment impacting patient prognosis. Currently, the treatment of GC still relies on early surgical resection, and comprehensive treatment is needed for patients with metastatic GC. Anikis-related genes (ANRGs) have been shown to affect tumor metastasis. Exploring the role of ANRGs in GC will help us understand the mechanism of tumor metastasis; screening precise targets and selecting appropriate chemotherapeutics will help individualize the treatment of GC patients. In this study, we established a prognostic scoring model based on ANRGs and explored their association with GC patient prognosis, immune microenvironment, chemotherapeutic drug sensitivity, and small molecule compounds. Our findings revealed that a gene signature composed of ANXA5, CCN1, EGF, VTN, and ZBTB7A accurately predicted GC patient prognosis. Patients in the low-risk group had better outcomes, higher macrophage M1 infiltration, and higher tumor mutation burden. The half maximal inhibitory concentration (IC50) values of Ponatinib (ap.24534), Motesanib (amg.706), and Navitoclax (abt.263) were lower in the high-risk group, indicating that patients in the high-risk group were more sensitive to these chemotherapy drugs, meaning with better clinical outcomes. In addition, we screened the small molecule compound SGC-CBP30 that can inhibit ANXA5 and CCN1, and these results help individualized treatment of GC patients. Our study identified key genes based on ANRGs and developed a novel gene signature for predicting the prognosis of GC patients and understanding the relationship between immunity and tumor mutation burden. Additionally, we identified chemotherapeutic drugs that can guide GC treatment and elucidated the binding affinity between specific targeted drugs and distinct protein sites, providing novel insights for the precise treatment of GC patients.
Collapse
Affiliation(s)
- Zhijing Zhang
- Pharmacy, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| | - Yeqing Zhu
- Pharmacy, Fuyang Hospital Affiliated to Anhui Medical University, Fuyang, China
| |
Collapse
|
21
|
Bilal H, Khan MN, Khan S, Fang W, Chang W, Yin B, Song NJ, Liu Z, Zhang D, Yao F, Wang X, Wang Q, Cai L, Hou B, Wang J, Mao C, Liu L, Zeng Y. Risk of candidiasis associated with interleukin-17 inhibitors: Implications and management. Mycology 2023; 15:30-44. [PMID: 38558839 PMCID: PMC10977001 DOI: 10.1080/21501203.2023.2265664] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/27/2023] [Indexed: 04/04/2024] Open
Abstract
The application of interleukin-17 (IL-17) inhibitors, including secukinumab, ixekizumab, brodalumab, and bimekizumab, are associated with elevated risk of candidiasis. These medications interfere with the IL-17 pathway, which is essential for maintaining mucosal barriers and coordinating the immune response against Candida species. The observational data and clinical trials demonstrate the increased incidence of candidiasis in individuals treated with IL-17 inhibitors. Brodalumab and bimekizumab pose a greater risk than secukinumab in eliciting candidiasis, whereas the data regarding ixekizumab are equivocal. Higher doses and prolonged treatment duration of IL-17 inhibitors increase the risk of candidiasis by compromising the immune response against Candida species. Prior to prescribing IL-17 inhibitors, healthcare professionals should comprehensively evaluate patients' medical histories and assess their risk factors. Patients should be educated on the signs and symptoms of candidiasis to facilitate early detection and intervention. Future research should focus on identifying the risk factors associated with candidiasis in patients receiving IL-17 inhibitors. Prospective studies and long-term surveillance are required to explore the impact of specific inhibitors on the incidence and severity of candidiasis and to evaluate the effectiveness of combination therapies, such as concurrent use of IL-17 inhibitors and prophylactic antifungal agents.
Collapse
Affiliation(s)
- Hazrat Bilal
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Muhammad Nadeem Khan
- Faculty of Biological Sciences, Department of Microbiology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Sabir Khan
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wenjie Fang
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wenqiang Chang
- School of Pharmacy, Shandong University, Qingdao, Shandong, China
| | - Bin Yin
- Department of Dermatovenereology, Chengdu Second People's Hospital, Chengdu, China
| | - Ning-Jing Song
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongrong Liu
- Department of Dermatology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongxing Zhang
- Department of Dermatology, Meizhou Dongshan Hospital, Meizhou, Guangdong, China
- Department of Dermatology, Meizhou People's Hospital, Meizhou, Guangdong, China
| | - Fen Yao
- Department of Pharmacy, Shantou University School Medical College, Shantou, China
| | - Xun Wang
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qian Wang
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lin Cai
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bing Hou
- Department of Clinical Laboratory, Skin and Venereal Diseases Prevention and Control Hospital of Shantou City, Shantou, Guangdong, China
| | - Jiayue Wang
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyan Mao
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingxi Liu
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuebin Zeng
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
22
|
Ozaki Y, Kinowaki K, Kawabata H, Kudo-Saito C. IL25 + macrophages are a key determinant of treatment resistance of IL17RB + breast cancer. Am J Cancer Res 2023; 13:4931-4943. [PMID: 37970362 PMCID: PMC10636685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023] Open
Abstract
Recurrence and metastasis are resistant to multimodal treatments, and are the major causes of death in breast cancer. Accumulating evidence suggests that the IL17RB signaling pathway plays a key role in progression and metastasis of breast cancer. Clinical significance of the IL17RB positivity in tumor tissues has been also reported as a poor prognostic factor in breast cancer. However, the molecular mechanisms underlying the poor prognosis of patients with IL17RB+ breast cancer, particularly the immunological aspects, remain to be fully elucidated, and elimination of the IL17RB+ tumors has not been practically achieved in clinical settings. In this study, we identified a distinct molecular mechanism underlying the intractability of the IL17RB+ tumors through tumor biological and immunological investigation using mouse and human breast cancer cells transduced with il17rb gene. IL17RB overexpression in tumor cells confers cancer stemness, including high invasive and self-renewal abilities, and high resistance to CDK4/6 inhibitors that have been considered as a promising agent for treating breast cancer despite the limited efficacy. In the mice implanted with the IL17RB+ tumors, IL25+ macrophages (Møs) are expanded locally in tumor tissues and systemically in spleen, and promote the IL17RB+ tumor progression directly by intensifying the tumor functions, and indirectly via impairment of anti-tumor effector CTLs and NK cells utilizing the secreted IL25. Blocking IL25 with the specific mAb, however, interferes the adverse events, and successfully elicits significant anti-tumor efficacy in combination with CDK4/6 inhibitors providing better survival in murine mammary tumor models. These results suggest that the IL25+ Mø is a key determinant of building the solid treatment resistance of the IL17RB+ breast cancer. Targeting the IL17RB-IL25 axis may be a promising strategy to improve clinical outcomes in the treatment of breast cancer patients, particularly with IL17RB+ tumors.
Collapse
Affiliation(s)
- Yukinori Ozaki
- Department of Immune Medicine, National Cancer Center Research InstituteTokyo 104-0045, Japan
- Department of Medical Oncology, Toranomon HospitalTokyo 105-8470, Japan
- Breast Oncology Center, Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyo 135-8550, Japan
| | - Keiichi Kinowaki
- Department of Pathology, Toranomon HospitalTokyo 105-8470, Japan
| | - Hidetaka Kawabata
- Department of Breast and Endocrine Surgery, Toranomon HospitalTokyo 105-8470, Japan
| | - Chie Kudo-Saito
- Department of Immune Medicine, National Cancer Center Research InstituteTokyo 104-0045, Japan
| |
Collapse
|
23
|
Liu T, Guo S, Ji Y, Zhu W. Role of cancer-educated mesenchymal stromal cells on tumor progression. Biomed Pharmacother 2023; 166:115405. [PMID: 37660642 DOI: 10.1016/j.biopha.2023.115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023] Open
Abstract
The malignant tumor is the main cause of human deaths worldwide. Current therapies focusing on the tumor itself have achieved unprecedented benefits. Various pro-tumorigenic factors in the tumor microenvironment (TME) could abolish the effect of cancer therapy. Mesenchymal stromal cells (MSCs) are one of the substantial components in the tumor microenvironment, contributing to tumor progression. However, MSCs are not inherently tumor-promoting. Indeed, they acquire pro-tumorigenic properties under the education of the TME. We herein review how various elements in the TME including tumor cells, immune cells, pro-inflammatory factors, hypoxia, and extracellular matrix influence the biological characteristics of MSCs through complex interactions and demonstrate the underlying mechanisms. We also highlight the importance of tumor-associated mesenchymal stromal cells (TA-MSCs) in promoting tumor progression. Our review gives a new insight into the TA-MSCs as a potential tumor therapeutic target. It is anticipated that subverting MSCs education will facilitate the outbreak of therapeutic strategies against tumors.
Collapse
Affiliation(s)
- Ting Liu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Shuwei Guo
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Yong Ji
- Department of Surgery, Jingjiang People's Hospital, Jingjiang 214500, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
24
|
Li Y, Mo N, Yang D, Lin Q, Huang W, Wang R. Predictive value of DNA methylation in the efficacy of chemotherapy for gastric cancer. Front Oncol 2023; 13:1238310. [PMID: 37771430 PMCID: PMC10523571 DOI: 10.3389/fonc.2023.1238310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/14/2023] [Indexed: 09/30/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common causes of cancer-related death. Drug resistance in chemotherapy often occurs in patients with GC, leading to tumor recurrence and poor survival. DNA methylation is closely related to the development of cancer. Methods To investigate the role of DNA methylation in chemotherapy resistance in GC patients, we conducted a comprehensive analysis using DNA methylation data and survival information obtained from The Cancer Genome Atlas. Univariate Cox analysis was performed to screen for differential DNA methylation of chemotherapy response in patients who did and did not receive chemotherapy. Multivariate Cox analysis was then performed to identify the independent prognostic genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were used to explore the biological function of the signature genes. Results Patients receiving adjuvant chemotherapy for GC survived longer. 308 differentially methylated genes were demonstrated to be associated with prognosis. Six genes were optimally chosed for establisehing the risk model, including C6orf222, CCNL1, CREBZF, GCKR, TFCP2, and VIPR2. It was constructed based on the DNA methylation levels of these six genes: risk score = 0.47123374*C6orf222 + 9.53554803*CCNL1 + 10.40234138* CREBZF + 0.07611856* GCKR + 18.87661557*TFCP2 - 0.46396254* VIPR2. According to the risk score, patients receiving chemotherapy were divided into high- and low-risk groups, and the prognosis of the two groups was compared. The high-risk group had a shorter survival; however, this association was not present in patients without chemotherapy. The accuracy and predictive efficacy of the risk score in predicting the 1-, 3-, and 5-year survival of patients was evaluated with the receiver operating characteristic curve. In patients receiving chemotherapy, the area under the curve of the risk score for 1-, 3-, and 5-year survival was 0.841, 0.72, and 0.734, respectively. In patients who did not receive chemotherapy, the area under the curve was 0.406, 0.585, and 0.585, respectively. A nomogram model was constructed based on the risk score and clinical indicators. The model showed good consistency in the predicted probabilities and actual probabilities. Gene Ontology functional enrichment of these candidate methylated genes showed the following molecular functions: RNA binding, protein binding, mRNA binding, and nucleic acid binding; that they were mediated mainly through the following cell components: nuclear speck, nucleoplasm, nucleus, catalytic step 2 spliceosome, and the transcription factor AP-1 complex; and that they were involved in the following biological processes: mRNA processing, mRNA splicing, and RNA polymerase II promoter transcription. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment results revealed that the signaling pathways mainly enriched were transcriptional misregulation in cancer, spliceosome, and the IL-17 signaling pathway. Conclusion Our work identifies a six DNA methylated expression signature as a promising biomarker of chemo-resistance in GC, which provides new insights into the development of new strategies to overcome chemo-resistance in GC.
Collapse
Affiliation(s)
- Ye Li
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ning Mo
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Dong Yang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - QiuLu Lin
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - WenFeng Huang
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rensheng Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
25
|
Jiang K, Liu H, Ge J, Yang B, Wang Y, Wang W, Wen Y, Zeng S, Chen Q, Huang J, Xiong X. A study related to the treatment of gastric cancer with Xiang-Sha-Liu-Jun-Zi-Tang based on network analysis. Heliyon 2023; 9:e19546. [PMID: 37809372 PMCID: PMC10558807 DOI: 10.1016/j.heliyon.2023.e19546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Xiang-Sha-Liu-Jun-Zi-Tang(XSLJZT) is a common formula for the treatment of Gastric Cancer(GC) and is widely used in clinical practice, however, there is a lack of investigation into its mechanism. Methods We collected and organized drug and disease targets, constructed the "XSLJZT-Active Ingredient-Target" visualization network, and performed GO and KEGG functional enrichment analysis of crossover genes, followed by molecular docking of active ingredients and core targets. The best docked monomers were combined with weighted gene co-expression network analysis(WGCNA) and macroscopically analyzed by GO and KEGG enrichment techniques. The results of cluster gene difference analysis, ROC evaluation, and CIBERSORT immune infiltration analysis were evaluated and finally supported by cellular experiments. Results The main components of XSLJZT are quercetin, stigmasterol, and naringenin, effectively treat GC by targeting STAT3, TP53 and MAPK3, which are involved in IL-17, TNF and HIF-1 signaling pathways. The results of molecular docking showed that quercetin bound better to the core targets. We performed an in-depth analysis of this monomer and found that quercetin acts on the core targets of TP53, MMP9, TIMP1 and MYC, and is involved in two key signaling pathways, TNF and IL-17, thus effectively treating GC. The experimental results are consistent with our analysis that quercetin inhibits the proliferation of GC cells and promotes apoptosis, and TP53, MYC and TIMP1 are the quercetin targets for the treatment of GC. Conclusion The present study tentatively suggests that quercetin, the main active ingredient in XSLJZT, can exert a therapeutic effect on GC by targeting TIMP1.
Collapse
Affiliation(s)
- Ke Jiang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Heli Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Jie Ge
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Bo Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Yu Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Wenbo Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Yuqi Wen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Siqing Zeng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Quan Chen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Jun Huang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Xingui Xiong
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- Hunan Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| |
Collapse
|
26
|
Chen Z, Qiao S, Yang L, Sun M, Li B, Lu A, Li F. Mechanistic Insights into the Roles of the IL-17/IL-17R Families in Pancreatic Cancer. Int J Mol Sci 2023; 24:13539. [PMID: 37686343 PMCID: PMC10487659 DOI: 10.3390/ijms241713539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The members of the cytokine interleukin 17 (IL-17) family, along with their receptors (IL-17R), are vital players in a range of inflammatory diseases and cancer. Although generally regarded as proinflammatory, the effects they exhibit on cancer progression are a double-edged sword, with both antitumor and protumor activities being discovered. There is growing evidence that the IL-17 signaling pathways have significant impacts on the tumor microenvironment (TME), immune response, and inflammation in various types of cancer, including pancreatic cancer. However, the detailed mechanistic functions of the IL-17/IL-17R families in pancreatic cancer were rarely systematically elucidated. This review considers the role of the IL-17/IL-17R families in inflammation and tumor immunity and elaborates on the mechanistic functions and correlations of these members with pathogenesis, progression, and chemoresistance in pancreatic cancer. By summarizing the advanced findings on the role of IL-17/IL17R family members and IL-17 signaling pathways at the molecular level, cellular level, and disease level in pancreatic cancer, this review provides an in-depth discussion on the potential of IL-17/IL-17R as prognostic markers and therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Zheng Chen
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shuangying Qiao
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Liu Yang
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Meiheng Sun
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Boyue Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lu
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Fangfei Li
- Shum Yiu Foon Shum Bik Chuen Memorial Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; (Z.C.); (S.Q.); (L.Y.); (M.S.); (B.L.)
- Institute of Precision Medicine and Innovative Drug Discovery (PMID), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
27
|
Wang C, He Y, He Y, Liang W, Zhou C, Wu M, Meng Z, Li W, Cao J. Prognostic and biological function value of OSBPL3 in colorectal cancer analyzed by multi-omic data analysis. BMC Gastroenterol 2023; 23:270. [PMID: 37550605 PMCID: PMC10408063 DOI: 10.1186/s12876-023-02824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/17/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies in the world. This study proposes to reveal prognostic biomarkers for the prognosis and treatment of CRC patients. METHODS Differential analysis of OSBPL3 was performed in pan-cancer, and the correlation between clinical stage and OSBPL3 was analyzed. Multiple omics analysis was used to compare the relationship between survival of patients and copy number variation, single nucleotide variant, and methylation status. Survival differences between high and low OSBPL3 expression groups were analyzed. Differentially expressed genes (DEGs) between high and low OSBPL3 expression groups were obtained, and functional enrichment analysis was implemented. Correlations between immune cells and OSBPL3 was analyzed. Drug sensitivity between the two OSBPL3 expression groups was compared. Moreover, the expression of OSBPL3 was verified by immunohistochemistry and real-time quantitative PCR. RESULTS OSBPL3 was differentially expressed in 13 tumors and had some correlations with T and N stages. OSBPL3 expression was regulated by methylation and higher OSBPL3 expression was associated with poorer prognosis in CRC. 128 DEGs were obtained and they were mainly involved in signaling receptor activator activity, aspartate and glutamate metabolism. T cell gamma delta and T cell follicular helper were significantly different in the high and low OSBPL3 expression groups. Moreover, OSBPL3 showed negative correlations with multiple drugs. OSBPL3 was significantly upregulated in CRC samples compared to normal samples. CONCLUSIONS A comprehensive analysis demonstrated that OSBPL3 had potential prognostic value, and guiding significance for CRC chemotherapeutic.
Collapse
Affiliation(s)
- Chengxing Wang
- The First Affiliated Hospital, Jinan University, Guangzhou, 529000, Guangdong, China
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Jiangmen, 529000, Guangdong, China
| | - Yaoming He
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Jiangmen, 529000, Guangdong, China
| | - Yu He
- National Drug Clinical Trial Institution, Jiangmen Central Hospital, Jiangmen, 529000, Guangdong, China
| | - Weijun Liang
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Jiangmen, 529000, Guangdong, China
| | - Chaorong Zhou
- Department of Gastrointestinal Surgery, Jiangmen Central Hospital, Jiangmen, 529000, Guangdong, China
| | - Meimei Wu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, 529000, Guangdong, China
| | - Zijie Meng
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, 529000, Guangdong, China
| | - Wanglin Li
- The First Affiliated Hospital, Jinan University, Guangzhou, 529000, Guangdong, China.
| | - Jie Cao
- The First Affiliated Hospital, Jinan University, Guangzhou, 529000, Guangdong, China.
| |
Collapse
|
28
|
Forston MD, Wei G, Chariker JH, Stephenson T, Andres K, Glover C, Rouchka EC, Whittemore SR, Hetman M. Enhanced oxidative phosphorylation, re-organized intracellular signaling, and epigenetic de-silencing as revealed by oligodendrocyte translatome analysis after contusive spinal cord injury. RESEARCH SQUARE 2023:rs.3.rs-3164618. [PMID: 37546871 PMCID: PMC10402259 DOI: 10.21203/rs.3.rs-3164618/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Reducing the loss of oligodendrocytes (OLs) is a major goal for neuroprotection after spinal cord injury (SCI). Therefore, the OL translatome was determined in Ribotag:Plp1-CreERT2 mice at 2, 10, and 42 days after moderate contusive T9 SCI. At 2 and 42 days, mitochondrial respiration- or actin cytoskeleton/cell junction/cell adhesion mRNAs were upregulated or downregulated, respectively. The latter effect suggests myelin sheath loss/morphological simplification which is consistent with downregulation of cholesterol biosynthesis transcripts on days 10 and 42. Various regulators of pro-survival-, cell death-, and/or oxidative stress response pathways showed peak expression acutely, on day 2. Many acutely upregulated OL genes are part of the repressive SUZ12/PRC2 operon suggesting that epigenetic de-silencing contributes to SCI effects on OL gene expression. Acute OL upregulation of the iron oxidoreductase Steap3 was confirmed at the protein level and replicated in cultured OLs treated with the mitochondrial uncoupler FCCP. Hence, STEAP3 upregulation may mark mitochondrial dysfunction. Taken together, in SCI-challenged OLs, acute and subchronic enhancement of mitochondrial respiration may be driven by axonal loss and subsequent myelin sheath degeneration. Acutely, the OL switch to oxidative phosphorylation may lead to oxidative stress that is further amplified by upregulation of such enzymes as STEAP3.
Collapse
Affiliation(s)
| | - George Wei
- University of Louisville School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Pan Y, Yang W, Tang B, Wang X, Zhang Q, Li W, Li L. The protective and pathogenic role of Th17 cell plasticity and function in the tumor microenvironment. Front Immunol 2023; 14:1192303. [PMID: 37457739 PMCID: PMC10339829 DOI: 10.3389/fimmu.2023.1192303] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
At the turn of the century, researchers discovered a unique subtype of T helper cells that secretes IL-17 and defined it as Th17. The latest study found that Th17 cells play both positive and negative definitive roles in the regulation of antitumor immune responses. Although the function of Th17 in the tumor microenvironment remains poorly understood, more and more studies have shown that this paradoxical dual role is closely related to the plasticity of Th17 cells in recent decades. Further understanding of the characteristics of Th17 cells in the tumor microenvironment could yield novel and useful therapeutic approaches to treat cancer. In this review, we further present the high plasticity of Th17 cells and the function of Th17-producing IL-17 in tumor immunity.
Collapse
|
30
|
Ladjevac N, Milovanovic M, Jevtovic A, Arsenijevic D, Stojanovic B, Dimitrijevic Stojanovic M, Stojanovic B, Arsenijevic N, Arsenijevic A, Milovanovic J. The Role of IL-17 in the Pathogenesis of Oral Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:9874. [PMID: 37373022 DOI: 10.3390/ijms24129874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Elucidating the inflammatory mechanisms underlying formation and progression of oral squamous cell carcinoma (OSCC) is crucial for discovering new targeted therapeutics. The proinflammatory cytokine IL-17 has proven roles in tumor formation, growth, and metastasis. The presence of IL-17 is demonstrated in both in vitro and in vivo models, and in OSCC patients, is mostly accompanied by enhanced proliferation and invasiveness of cancer cells. Here we review the known facts regarding the role of IL-17 in OSCC pathogenesis, namely the IL-17 mediated production of proinflammatory mediators that mobilize and activate myeloid cells with suppressive and proangiogenic activities and proliferative signals that directly induce proliferation of cancer cells and stem cells. The possibility of a potential IL-17 blockade in OSCC therapy is also discussed.
Collapse
Affiliation(s)
- Nevena Ladjevac
- Department of Otorhinolaryngology, General Hospital Uzice, 31000 Uzice, Serbia
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Andra Jevtovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Otorhinolaryngology and Maxillofacial Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragana Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojana Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Microbiology and Immunology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Histology end Embryology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
31
|
Brembilla NC, Boehncke WH. Revisiting the interleukin 17 family of cytokines in psoriasis: pathogenesis and potential targets for innovative therapies. Front Immunol 2023; 14:1186455. [PMID: 37283755 PMCID: PMC10239979 DOI: 10.3389/fimmu.2023.1186455] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease, associated with substantial comorbidity. TH17 lymphocytes, differentiating under the influence of dendritic cell-derived IL-23, and mediating their effects via IL-17A, are believed to be central effector cells in psoriasis. This concept is underlined by the unprecedented efficacy of therapeutics targeting this pathogenetic axis. In recent years, numerous observations made it necessary to revisit and refine this simple "linear" pathogenetic model. It became evident that IL-23 independent cells exist that produce IL-17A, that IL-17 homologues may exhibit synergistic biological effects, and that the blockade of IL-17A alone is clinically less effective compared to the inhibition of several IL-17 homologues. In this review, we will summarize the current knowledge around IL-17A and its five currently known homologues, namely IL-17B, IL-17C, IL-17D, IL-17E (also known as IL-25) and IL-17F, in relation to skin inflammation in general and psoriasis in particular. We will also re-visit the above-mentioned observations and integrate them into a more comprehensive pathogenetic model. This may help to appreciate current as well as developing anti-psoriatic therapies and to prioritize the selection of future drugs' mode(s) of action.
Collapse
Affiliation(s)
| | - Wolf-Henning Boehncke
- Divison of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
32
|
Wang Y, Zhang Y, Shou S, Jin H. The role of IL-17 in acute kidney injury. Int Immunopharmacol 2023; 119:110307. [PMID: 37182383 DOI: 10.1016/j.intimp.2023.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Acute kidney injury (AKI) is a common clinical kidney disease with a high mortality rate. AKI is caused by a variety of factors, including sepsis, ischemia, and nephrotoxic drugs, and can progress to chronic kidney disease and end-stage renal disease. Numerous studies have suggested that cytokines can be used as therapeutic targets for AKI. IL-17 is a pro-inflammatory cytokine that not only participates in the host defense and the development of autoimmune diseases but also is linked to AKI due to a variety of factors. This review will give an overview of the structure, signaling pathways, and biological functions of IL-17, as well as its role in AKI, to show that IL-17 is a potential target for the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Yali Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Yan Zhang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Songtao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Heng Jin
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, PR China.
| |
Collapse
|
33
|
Davydova A, Kurochkina Y, Goncharova V, Vorobyeva M, Korolev M. The Interleukine-17 Cytokine Family: Role in Development and Progression of Spondyloarthritis, Current and Potential Therapeutic Inhibitors. Biomedicines 2023; 11:1328. [PMID: 37238999 PMCID: PMC10216275 DOI: 10.3390/biomedicines11051328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Spondyloarthritis (SpA) encompasses a group of chronic inflammatory rheumatic diseases with a predilection for the spinal and sacroiliac joints, which include axial spondyloarthritis, psoriatic arthritis, reactive arthritis, arthritis associated with chronic inflammatory bowel disease, and undifferentiated spondyloarthritis. The prevalence of SpA in the population varies from 0.5 to 2%, most commonly affecting young people. Spondyloarthritis pathogenesis is related to the hyperproduction of proinflammatory cytokines (TNFα, IL-17A, IL-23, etc.). IL-17A plays a key role in the pathogenesis of spondyloarthritis (inflammation maintenance, syndesmophites formation and radiographic progression, enthesites and anterior uveitis development, etc.). Targeted anti-IL17 therapies have established themselves as the most efficient therapies in SpA treatment. The present review summarizes literature data on the role of the IL-17 family in the pathogenesis of SpA and analyzes existing therapeutic strategies for IL-17 suppression with monoclonal antibodies and Janus kinase inhibitors. We also consider alternative targeted strategies, such as the use of other small-molecule inhibitors, therapeutic nucleic acids, or affibodies. We discuss advantages and pitfalls of these approaches and the future prospects of each method.
Collapse
Affiliation(s)
- Anna Davydova
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Yuliya Kurochkina
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| | - Veronika Goncharova
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| | - Mariya Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Maksim Korolev
- Research Institute of Clinical and Experimental Lymphology, Affiliated Branch of Federal Research Center of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, 630060 Novosibirsk, Russia; (Y.K.); (V.G.); (M.K.)
| |
Collapse
|
34
|
Sun Y, Khan MAAK, Mangiola S, Barrow AD. IL17RB and IL17REL Expression Are Associated with Improved Prognosis in HPV-Infected Head and Neck Squamous Cell Carcinomas. Pathogens 2023; 12:pathogens12040572. [PMID: 37111458 PMCID: PMC10143491 DOI: 10.3390/pathogens12040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Changes in the cellular secretome are implicated in virus infection, malignancy, and anti-tumor immunity. We analyzed the association between transcriptional signatures (TS) from 24 different immune and stromal cell types on the prognosis of HPV-infected and HPV-free head and neck squamous carcinoma (HNSCC) patients from The Cancer Genome Atlas (TCGA) cohort. We found that HPV-positive HNSCC patients have tumors with elevated immune cell TS and improved prognosis, which was specifically associated with an increased tumor abundance of memory B and activated natural killer (NK) cell TS, compared to HPV-free HNSCC patients. HPV-infected patients upregulated many transcripts encoding secreted factors, such as growth factors, hormones, chemokines and cytokines, and their cognate receptors. Analysis of secretome transcripts and cognate receptors revealed that tumor expression of IL17RB and IL17REL are associated with a higher viral load and memory B and activated NK cell TS, as well as improved prognosis in HPV-infected HNSCC patients. The transcriptional parameters that we describe may be optimized to improve prognosis and risk stratification in the clinic and provide insights into gene and cellular targets that may potentially enhance anti-tumor immunity mediated by NK cells and memory B cells in HPV-infected HNSCC patients.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Md Abdullah Al Kamran Khan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Stefano Mangiola
- Division of Bioinformatics, Walter and Eliza Hall Institute, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia
| | - Alexander David Barrow
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| |
Collapse
|
35
|
Osman AI, Hosny M, Eltaweil AS, Omar S, Elgarahy AM, Farghali M, Yap PS, Wu YS, Nagandran S, Batumalaie K, Gopinath SCB, John OD, Sekar M, Saikia T, Karunanithi P, Hatta MHM, Akinyede KA. Microplastic sources, formation, toxicity and remediation: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2023; 21:1-41. [PMID: 37362012 PMCID: PMC10072287 DOI: 10.1007/s10311-023-01593-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 06/10/2023]
Abstract
Microplastic pollution is becoming a major issue for human health due to the recent discovery of microplastics in most ecosystems. Here, we review the sources, formation, occurrence, toxicity and remediation methods of microplastics. We distinguish ocean-based and land-based sources of microplastics. Microplastics have been found in biological samples such as faeces, sputum, saliva, blood and placenta. Cancer, intestinal, pulmonary, cardiovascular, infectious and inflammatory diseases are induced or mediated by microplastics. Microplastic exposure during pregnancy and maternal period is also discussed. Remediation methods include coagulation, membrane bioreactors, sand filtration, adsorption, photocatalytic degradation, electrocoagulation and magnetic separation. Control strategies comprise reducing plastic usage, behavioural change, and using biodegradable plastics. Global plastic production has risen dramatically over the past 70 years to reach 359 million tonnes. China is the world's top producer, contributing 17.5% to global production, while Turkey generates the most plastic waste in the Mediterranean region, at 144 tonnes per day. Microplastics comprise 75% of marine waste, with land-based sources responsible for 80-90% of pollution, while ocean-based sources account for only 10-20%. Microplastics induce toxic effects on humans and animals, such as cytotoxicity, immune response, oxidative stress, barrier attributes, and genotoxicity, even at minimal dosages of 10 μg/mL. Ingestion of microplastics by marine animals results in alterations in gastrointestinal tract physiology, immune system depression, oxidative stress, cytotoxicity, differential gene expression, and growth inhibition. Furthermore, bioaccumulation of microplastics in the tissues of aquatic organisms can have adverse effects on the aquatic ecosystem, with potential transmission of microplastics to humans and birds. Changing individual behaviours and governmental actions, such as implementing bans, taxes, or pricing on plastic carrier bags, has significantly reduced plastic consumption to 8-85% in various countries worldwide. The microplastic minimisation approach follows an upside-down pyramid, starting with prevention, followed by reducing, reusing, recycling, recovering, and ending with disposal as the least preferable option.
Collapse
Affiliation(s)
- Ahmed I. Osman
- School of Chemistry and Chemical Engineering, David Keir Building, Queen’s University Belfast, Stranmillis Road, Belfast, BT9 5AG Northern Ireland, UK
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria, 21511 Egypt
| | | | - Sara Omar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M. Elgarahy
- Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
- Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt
| | - Mohamed Farghali
- Department of Agricultural Engineering and Socio-Economics, Kobe University, Kobe, 657-8501 Japan
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526 Egypt
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi’an Jiaotong-Liverpool University, Suzhou, 215123 China
| | - Yuan-Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Saraswathi Nagandran
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500 Subang Jaya, Selangor Malaysia
| | - Kalaivani Batumalaie
- Department of Biomedical Sciences, Faculty of Health Sciences, Asia Metropolitan University, 81750 Johor Bahru, Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence, Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis Malaysia
| | - Oliver Dean John
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah Malaysia
| | - Mahendran Sekar
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, 30450 Ipoh, Perak Malaysia
| | - Trideep Saikia
- Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati Assam, India
| | - Puvanan Karunanithi
- Department of Anatomy, Faculty of Medicine, Manipal University College Malaysia (MUCM), Melaka, Malaysia
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Hayrie Mohd Hatta
- Centre for Research and Development, Asia Metropolitan University, 81750 Johor Bahru, Johor Malaysia
| | - Kolajo Adedamola Akinyede
- Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, 7530 South Africa
- Biochemistry Unit, Department of Science Technology, The Federal Polytechnic, P.M.B.5351, Ado Ekiti, 360231 Ekiti State Nigeria
| |
Collapse
|
36
|
Lai X, Yu R, Ou Q, Bao H, Wu X, Shao Y, Li Y, Zhang Y, Ding Q. Clinical and molecular characteristics of kinase domain duplications across diverse cancer types in the Chinese population. Cancer Med 2023; 12:6009-6015. [PMID: 36325957 PMCID: PMC10028036 DOI: 10.1002/cam4.5325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Kinase domain duplications (KDDs) have recently been recognized as oncogenic mutations and possible association with drug resistance in cancers. METHOD Here, targeted sequencing was performed with the tumor tissue and/or plasma from 65 cancer patients with KDDs. RESULT Intact KDDs were identified in approximately 0.1% of the total population across multiple cancer types. EGFR KDD was first identified in colorectal cancer and breast cancer, whereas FGFR2 KDD was first identified in gastric cancer. Tumors with EGFR KDD displayed lower concurrent TP53 gene alterations (p = 0.03) and slightly higher chromosome instability (p = 0.27) compared to tumors with non-EGFR-KDDs. Immune pathway analysis further revealed the enrichment of the cytokine receptors pathway (93%) in the KDD carriers. Hyperprogression-related gene mutations were identified in four cases. CONCLUSION Collectively, our data revealed the genomic features of KDD alterations in a multi-cancer cohort, providing more information for the potential treatment application in the KDD carriers.
Collapse
Affiliation(s)
- Xiaojing Lai
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ruoying Yu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Xue Wu
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Li
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Ying Zhang
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Qingqing Ding
- Department of Geriatric Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
37
|
Hasan N, Hasani NAH, Omar E, Sham FR, Fuad SBSA, Karim MKA, Ibahim MJ. A single targeted gamma-ray irradiation induced an acute modulation of immune cells and related cytokines in EMT6 mouse-bearing tumour model. Cancer Biomark 2023; 38:61-75. [PMID: 37522193 DOI: 10.3233/cbm-220268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
BACKGROUND A complicated interplay between radiation doses, tumour microenvironment (TME), and host immune system is linked to the active participation of immune response. OBJECTIVE The effects of single targeted 2 Gy and 8 Gy gamma-ray irradiations on the immune cell population (lymphocytes, B-cells, T-cells, neutrophils, eosinophils, and macrophages) in EMT6 mouse-bearing tumour models was investigated. METHODS The effects of both irradiation doses in early (96 hours) and acute phase (5 to 11 days) post-irradiation on immune parameters were monitored in blood circulation and TME using flow cytometry. Simultaneously, selected cytokines related to immune cells within the TME were measured using multiplex ELISA. RESULTS A temporary reduction in systemic total white blood count (TWBC) resulted from an early phase (96 hours) of gamma-ray irradiation at 2 Gy and 8 Gy compared to sham control group. No difference was obtained in the acute phase. Neutrophils dominated among other immune cells in TME in sham control group. Eosinophils in TME was significantly increased after 8 Gy treatment in acute phase compared to sham control (p< 0.005). Furthermore, the increment of tumour necrosis (TNF)-α, eotaxin and interleukin (IL)-7 (p< 0.05) in both treatment groups and phases were associated with anti-tumour activities within TME by gamma-ray irradiation. CONCLUSION The temporary changes in immune cell populations within systemic circulation and TME induced by different doses of gamma-ray irradiation correlated with suppression of several pro-tumorigenic cytokines in mouse-bearing EMT6 tumour models.
Collapse
Affiliation(s)
- Nurhaslina Hasan
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Faculty of Dentistry, University Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | | | - Effat Omar
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Fatihah Ronny Sham
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | | | | | | |
Collapse
|
38
|
The Pharmacological Mechanism of Curcumin against Drug Resistance in Non-Small Cell Lung Cancer: Findings of Network Pharmacology and Bioinformatics Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5926609. [PMID: 36276869 PMCID: PMC9586741 DOI: 10.1155/2022/5926609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/30/2022] [Indexed: 11/04/2022]
Abstract
The pharmacological mechanism of curcumin against drug resistance in non-small cell lung cancer (NSCLC) remains unclear. This study aims to summarize the genes and pathways associated with curcumin action as an adjuvant therapy in NSCLC using network pharmacology, drug-likeness, pharmacokinetics, functional enrichment, protein-protein interaction (PPI) analysis, and molecular docking. Prognostic genes were identified from the curcumin-NSCLC intersection gene set for the following drug sensitivity analysis. Immunotherapy, chemotherapy, and targeted therapy sensitivity analyses were performed using external cohorts (GSE126044 and IMvigor210) and the CellMiner database. 94 curcumin-lung adenocarcinoma (LUAD) hub targets and 41 curcumin-lung squamous cell carcinoma (LUSC) hub targets were identified as prognostic genes. The anticancer effect of curcumin was observed in KEGG pathways involved with lung cancer, cancer therapy, and other cancers. Among the prognostic curcumin-NSCLC intersection genes, 20 LUAD and 8 LUSC genes were correlated with immunotherapy sensitivity in the GSE126044 NSCLC cohort; 30 LUAD and 13 LUSC genes were associated with immunotherapy sensitivity in the IMvigor210 cohort; and 12 LUAD and 13 LUSC genes were related to chemosensitivity in the CellMiner database. Moreover, 3 LUAD and 5 LUSC genes were involved in the response to targeted therapy in the CellMiner database. Curcumin regulates drug sensitivity in NSCLC by interacting with cell cycle, NF-kappa B, MAPK, Th17 cell differentiation signaling pathways, etc. Curcumin in combination with immunotherapy, chemotherapy, or targeted drugs has the potential to be effective for drug-resistant NSCLC. The findings of our study reveal the relevant key signaling pathways and targets of curcumin as an adjuvant therapy in the treatment of NSCLC, thus providing pharmacological evidence for further experimental research.
Collapse
|
39
|
Construction of a Colorectal Cancer Prognostic Risk Model and Screening of Prognostic Risk Genes Using Machine-Learning Algorithms. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9408839. [PMID: 36267311 PMCID: PMC9578894 DOI: 10.1155/2022/9408839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/09/2022]
Abstract
This study is aimed at constructing a prognostic risk model for colorectal cancer (CRC) using machine-learning algorithms to provide accurate staging and screening of credible prognostic risk genes. We extracted CRC data from GSE126092 and GSE156355 of the Gene Expression Omnibus (GEO) database and datasets from TCGA to analyze the differentially expressed genes (DEGs) using bioinformatics analysis. Among the 330 shared DEGs related to CRC prognosis, we divided the analysis period into different phases and applied univariate COX regression, LASSO, and multivariate COX regression analysis. GO analysis and KEGG analysis revealed that the functions of these DEGs were primarily focused on cell cycle, DNA replication, cell mitosis, and other related functions, and this confirmed our results from a biological perspective. Finally, a prognostic risk model for CRC based on the CHGA, CLU, PLK1, AXIN2, NR3C2, IL17RB, GCG, and AJUBA genes was constructed, and the risk score enabled us to predict the prognosis for CRC. To obtain a comprehensive and accurate model, we used both internal and external evaluations, and the model was able to correctly differentiate patients with CRC into a high-risk group with poor prognosis and a low-risk group with good prognosis. The AUC values of the 3-, 5-, and 10-year survival ROC curves were 0.715, 0.721, and 0.777, respectively, according to the internal evaluation, and the AUC values were 0.606, 0.698, and 0.608, respectively, for the external evaluation using GSE39582 from the GEO database. We determined that CLU, PLK1, and IL17RB could be considered to be independent prognostic factors for CRC with significantly different expression (P < 0.05). Using machine-learning methods, a prognostic risk model comprised of eight genes was constructed. Not only does this model provide improved treatment guidance, but it also provides a novel perspective for analyzing survival conditions at a deeper biological level.
Collapse
|
40
|
Interleukin-17 Family Cytokines in Metabolic Disorders and Cancer. Genes (Basel) 2022; 13:genes13091643. [PMID: 36140808 PMCID: PMC9498678 DOI: 10.3390/genes13091643] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
Interleukin-17 (IL-17) family cytokines are potent drivers of inflammatory responses. Although IL-17 was originally identified as a cytokine that induces protective effects against bacterial and fungal infections, IL-17 can also promote chronic inflammation in a number of autoimmune diseases. Research in the last decade has also elucidated critical roles of IL-17 during cancer development and treatment. Intriguingly, IL-17 seems to play a role in the risk of cancers that are associated with metabolic disorders. In this review, we summarize our current knowledge on the biochemical basis of IL-17 signaling, IL-17′s involvement in cancers and metabolic disorders, and postulate how IL-17 family cytokines may serve as a bridge between these two types of diseases.
Collapse
|
41
|
Wu J, Meng Y, Xu F, Wu Q, Wang C. The viral and inflammation hypothesis of epileptic seizures based on bioinformatic study of circulating miRNAs and peripheral whole-blood mRNAs of adult epilepsy patients. Front Neurol 2022; 13:909142. [PMID: 36172025 PMCID: PMC9510610 DOI: 10.3389/fneur.2022.909142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background The study aimed to investigate the genome-wide biological significance of the circulating miRNAs markers found in peripheral whole blood of adult epileptic seizures patients by integrating analysis using bioinformatics approaches. Methods The Gene Expression Omnibus (GEO) dataset was accessed to retrieve epilepsy-related circulating miRNA profile data (GSE114847) including 89 subjects (n = 40 epileptic and n = 49 healthy control), peripheral whole-blood mRNA expression data (GSE143772) including 64 subjects (n = 32 epileptic and n = 32 healthy control). To eliminate age disparities in epilepsy pathophysiology only adult epileptic patients were selected. Furthermore, GEO2R was used to identify adult-related mRNAs (AD-mRNAs) against epilepsy as potential biomarkers. Moreover, to predict the potential target genes for these mRNAs, we used mirWalk. Finally, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized to investigate the biological activities of AD-mRNAs. Importantly, the protein–protein network of these identified AD-mRNAs was constructed. Eventually, the overlapping AD-mRNAs and AD-miRNAs and their functions were explored to shortlist potential AD-epileptic markers. Result The current study resulted in the identification of 79 upregulated and 40 downregulated different expression gene (DEGs) in both applied data. These targets were cross-linked and mapped with each other to acquire common adult epilepsy-related overlapped mRNAs (Mo-mRNAs). It was found that there was a total of 36 overlapping genes. These overlapped AD-mRNAs markers were found to be functionally enriched in cell regulating pathways i.e., positive regulation of type 1 interferon signaling pathway and mitochondrial cytochrome C release pathway, respectively. Conclusion This research gives a comprehensive depiction of the mRNAs that may be involved in adult epilepsy patients' pathophysiological progressions.
Collapse
Affiliation(s)
- Jiahuan Wu
- Department of Rehabilitation Medicine, Suzhou Science and Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ying Meng
- The Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Xu
- Department of Pharmacology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qian Wu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Qian Wu
| | - Cheng Wang
- Department of Pharmacology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Cheng Wang
| |
Collapse
|
42
|
Filip-Psurska B, Zachary H, Strzykalska A, Wietrzyk J. Vitamin D, Th17 Lymphocytes, and Breast Cancer. Cancers (Basel) 2022; 14:cancers14153649. [PMID: 35954312 PMCID: PMC9367508 DOI: 10.3390/cancers14153649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The effect of vitamin D3 on the development of breast cancer (favorable, ineffective, or even unfavorable) depends on many factors, such as age, menopausal status, or obesity. The immunomodulatory effect of vitamin D may be unfavorable in case of breast cancer progression. The effect of vitamin D on Th17 cells may depend on disease type and patients’ age. Our goal was to summarize the data available and to find indications of vitamin D treatment failure or success. Therefore, in this review, we present data describing the effects of vitamin D3 on Th17 cells, mainly in breast cancer. Abstract Vitamin D3, which is well known to maintain calcium homeostasis, plays an important role in various cellular processes. It regulates the proliferation and differentiation of several normal cells, including immune and neoplastic cells, influences the cell cycle, and stimulates cell maturation and apoptosis through a mechanism dependent on the vitamin D receptor. The involvement of vitamin D3 in breast cancer development has been observed in numerous clinical studies. However, not all studies support the protective effect of vitamin D3 against the development of this condition. Furthermore, animal studies have revealed that calcitriol or its analogs may stimulate tumor growth or metastasis in some breast cancer models. It has been postulated that the effect of vitamin D3 on T helper (Th) 17 lymphocytes is one of the mechanisms promoting metastasis in these murine models. Herein we present a literature review on the existing data according to the interplay between vitamin D, Th17 cell and breast cancer. We also discuss the effects of this vitamin on Th17 lymphocytes in various disease entities known to date, due to the scarcity of scientific data on Th17 lymphocytes and breast cancer. The presented data indicate that the effect of vitamin D3 on breast cancer development depends on many factors, such as age, menopausal status, or obesity. According to that, more extensive clinical trials and studies are needed to assess the importance of vitamin D in breast cancer, especially when no correlations seem to be obvious.
Collapse
|
43
|
Chang X, Xing P. Identification of a novel lipid metabolism-related gene signature within the tumour immune microenvironment for breast cancer. Lipids Health Dis 2022; 21:43. [PMID: 35562758 PMCID: PMC9103058 DOI: 10.1186/s12944-022-01651-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Systemic factors can strongly affect how tumour cells behave, grow, and communicate with other cells in breast cancer. Lipid metabolic reprogramming is a systemic process that tumour cells undergo; however, the formation and dynamics of lipids associated with the tumour immune microenvironment (TIME) remain unclear. The investigation of the sophisticated bidirectional crosstalk of tumour cells with cancer metabolism, gene expression, and TIME could have the potential to identify novel biomarkers for diagnosis, prognosis, and immunotherapy. This study aimed to construct a prognostic signature to detect the bicrosstalk between the lipid metabolic system and the TIME of breast cancer. Methods To detect the expression of LRGs and execute GO/KEGG analysis, the R program was chosen. Considering the clinical information and pathological features, a prognostic gene signature was constructed by LASSO Cox regression analysis. TMB, MSI, and immune infiltration analyses were performed, and consensus cluster analysis of LRGs was also performed. Results These 16 lipid metabolism-related genes (LRGs) were mainly involved in the process of lipid metabolism and fatty acid binding in breast cancer. Prognosis analysis identified the prognostic value of FABP7(Fatty acid binding protein 7) and NDUFAB1(NADH:ubiquinone oxidoreductase subunit AB1) in breast cancer patients. The prognostic gene signature constructed with FABP7 and NDUFAB1 was significantly related to immune cell infiltration and could predict the overall survival rate with above average correctness of breast cancer patients. FABP7 and NDUFAB1 were proven to have relevance in immune cell infiltration and tumour mutation burden (TMB). Consensus cluster analysis identified that the upregulated mRNAs were mostly related to the oncogenesis process, while the downregulated mRNAs were associated with immune-related signalling pathways. Conclusion A comprehensive analysis was performed to evaluate the lipid metabolic system and identified a signature constructed by two prognostic genes for immunotherapies in breast cancer. The results also revealed evidence of vulnerabilities in the interplay between the lipid metabolic system and the TIME in breast cancer. Further data with clinical studies and experiments are warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01651-9.
Collapse
Affiliation(s)
- Xu Chang
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Affiliated Hospital of China Medical University, No.77 PuHe Road, Shenyang North New Area, Shenyang, 110122, China
| | - Peng Xing
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Affiliated Hospital of China Medical University, No.77 PuHe Road, Shenyang North New Area, Shenyang, 110122, China.
| |
Collapse
|
44
|
Aziz S, Rasheed F, Zahra R, König S. Gastric Cancer Pre-Stage Detection and Early Diagnosis of Gastritis Using Serum Protein Signatures. Molecules 2022; 27:molecules27092857. [PMID: 35566209 PMCID: PMC9099457 DOI: 10.3390/molecules27092857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: A gastric cancer (GC) diagnosis relies on histopathology. Endoscopy rates are increasing. Helicobacter pylori infection is a major GC risk factor. In an effort to elucidate abundant blood biomarkers, and potentially reduce the number of diagnostic surgical interventions, we investigated sera and biopsies from a cohort of 219 H. pylori positive and negative patients diagnosed with GC, gastritis, and ulcers. This allowed the comparative investigation of the different gastroduodenal diseases, and the exclusion of protein changes resulting from bacterial infection or inflammation of the gastric mucosa when searching for GC-dependent proteins. Methods: High-definition mass spectrometry-based expression analysis of tryptically digested proteins was performed, followed by multivariate statistical and network analyses for the different disease groups, with respect to H. pylori infection status. Significantly regulated proteins differing more than two-fold between groups were shortlisted, and their role in gastritis and GC discussed. Results: We present data of comparative protein analyses of biopsies and sera from patients suffering from mild to advanced gastritis, ulcers, and early to advanced GC, in conjunction with a wealth of metadata, clinical information, histopathological evaluation, and H. pylori infection status. We used samples from pre-malignant stages to extract prospective serum markers for early-stage GC, and present a 29-protein marker panel containing, amongst others, integrin β-6 and glutathione peroxidase. Furthermore, ten serum markers specific for advanced GC, independent of H. pylori infection, are provided. They include CRP, protein S100A9, and kallistatin. The majority of these proteins were previously discussed in the context of cancer or GC. In addition, we detected hypoalbuminemia and increased fibrinogen serum levels in gastritis. Conclusion: Two protein panels were suggested for the development of multiplex tests for GC serum diagnostics. For most of the elements contained in these panels, individual commercial tests are available. Thus, we envision the design of multi-protein assays, incorporating several to all of the panel members, in order to gain a level of specificity that cannot be achieved by testing a single protein alone. As their development and validation will take time, gastritis diagnosis based on the fibrinogen to albumin serum ratio may be a quick way forward. Its determination at the primary/secondary care level for early diagnosis could significantly reduce the number of referrals to endoscopy. Preventive measures are in high demand. The protein marker panels presented in this work will contribute to improved GC diagnostics, once they have been transferred from a research result to a practical tool.
Collapse
Affiliation(s)
- Shahid Aziz
- BreathMAT Lab, Pakistan Institute of Nuclear Science and Technology (PINSTEC), Islamabad 44000, Pakistan; (S.A.); (F.R.)
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- IZKF Core Unit Proteomics, University of Münster, 48149 Münster, Germany
| | - Faisal Rasheed
- BreathMAT Lab, Pakistan Institute of Nuclear Science and Technology (PINSTEC), Islamabad 44000, Pakistan; (S.A.); (F.R.)
| | - Rabaab Zahra
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Simone König
- IZKF Core Unit Proteomics, University of Münster, 48149 Münster, Germany
- Correspondence:
| |
Collapse
|
45
|
Zhong H, Sun X. Contribution of Interleukin-17A to Retinal Degenerative Diseases. Front Immunol 2022; 13:847937. [PMID: 35392087 PMCID: PMC8980477 DOI: 10.3389/fimmu.2022.847937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/25/2022] [Indexed: 12/26/2022] Open
Abstract
Retinal degenerative diseases are a leading cause of vision loss and blindness throughout the world, characterized by chronic and progressive loss of neurons and/or myelin. One of the common features of retinal degenerative diseases and central neurodegenerative diseases is chronic neuroinflammation. Interleukin-17A (IL-17A) is the cytokine most closely related to disease in its family. Accumulating evidence suggests that IL-17A plays a key role in human retinal degenerative diseases, including age-related macular degeneration, diabetic retinopathy and glaucoma. This review aims to provide an overview of the role of IL-17A participating in the pathogenesis of retinal degenerative diseases, which may open new avenues for potential therapeutic interventions.
Collapse
Affiliation(s)
- Huimin Zhong
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xiaodong Sun
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
46
|
Wang X, Bajpai AK, Gu Q, Centeno A, Starlard-Davenport A, Prins P, Xu F, Lu L. A systems genetics approach delineates the role of Bcl2 in leukemia pathogenesis. Leuk Res 2022; 114:106804. [PMID: 35182904 PMCID: PMC9272521 DOI: 10.1016/j.leukres.2022.106804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 02/06/2022] [Indexed: 01/11/2023]
Abstract
Leukemia is a group of malignancies of the blood forming tissues, and is characterized by the uncontrolled proliferation of blood cells. In the United States, it accounts for approximately 3.5% and 4% of all cancer-related incidences and mortalities, respectively. The current study aimed to explore the role of Bcl2 and associated genes in leukemia pathogenesis using a systems genetics approach. The transcriptome data from BXD Recombinant Inbred (RI) mice was analyzed to identify the expression of Bcl2 in myeloid cells. eQTL mapping was performed to select the potential chromosomal region and subsequently identify the candidate gene modulating the expression of Bcl2. Furthermore, gene enrichment and protein-protein interaction (PPI) analyses of the Bcl2-coexpressed genes were performed to demonstrate the role of Bcl2 in leukemia pathogenesis. The Bcl2-coexpressed genes were found to be enriched in various hematopoietic system related functions, and multiple pathways related to signaling, immune response, and cancer. The PPI network analysis demonstrated direct interaction of hematopoietic function related genes, such as Bag3, Bak1, Bcl2l11, Bmf, Mapk9, Myc, Ppp2r5c, and Ppp3ca with Bcl2. The eQTL mapping identified a 4.5 Mb genomic region on chromosome 11, potentially regulating the expression of Bcl2. A multi-criteria filtering process identified Top2a, among the genes located in the mapped locus, as the best candidate upstream regulator for Bcl2 expression variation. Hence, the current study provides better insights into the role of Bcl2 in leukemia pathogenesis and demonstrates the significance of our approach in gaining new knowledge on leukemia. Furthermore, our findings from the PPI network analysis and eQTL mapping provide supporting evidence of leukemia-associated genes, which can be further explored for their functional importance in leukemia. DATA AVAILABILITY: The myeloid cell transcriptomic data of the BXD mice used in this study can be accessed through our GeneNetwork (http://www.genenetwork.org) with the accession number of GN144.
Collapse
Affiliation(s)
- Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qingqing Gu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA,Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu 226001, China
| | - Arthur Centeno
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pjotr Prins
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fuyi Xu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China.
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
47
|
Yong T, Chang KK, Wang YS, Ma C. Active Humoral Response Reverts Tumorigenicity through Disruption of Key Signaling Pathway. Vaccines (Basel) 2022; 10:163. [PMID: 35214622 PMCID: PMC8875535 DOI: 10.3390/vaccines10020163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors such as monoclonal antibodies (mAbs) are amongst the most important breakthroughs in cancer therapeutics. However, high cost and short acting time limits its affordability and clinical application. Therefore, an economical and durable alternative is urgently needed. Previously, we identified an IL-17RB targeting mAb which intercepts IL-17B/IL-17RB signal transduction and suppresses tumorigenesis in many types of cancer. We reason that active immunity against the antigenic epitope of IL-17RB can reproduce the anti-cancer effect of mAbs with better sustainability. Here, we present a cancer vaccine composed of multiple synthesized epitope peptides chemically conjugated onto CRM197, a highly immunogenic carrier protein. Combining mass spectrometry with immunoassay, we standardized hapten density determination and optimized vaccine design. Furthermore, orthotopically transplanted syngeneic mouse tumor 4T1 showed that administration of this vaccine therapeutically mitigates primary cancer growth as well as distance metastasis. In conclusion, we demonstrate preparation, characterization and pre-clinical application of a novel peptide cancer vaccine.
Collapse
Affiliation(s)
- Tracer Yong
- Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan; (T.Y.); (K.-K.C.); (Y.-S.W.)
| | - Ko-Keng Chang
- Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan; (T.Y.); (K.-K.C.); (Y.-S.W.)
- Chemistry Department, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Sheng Wang
- Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan; (T.Y.); (K.-K.C.); (Y.-S.W.)
| | - Che Ma
- Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan; (T.Y.); (K.-K.C.); (Y.-S.W.)
| |
Collapse
|
48
|
Li S, Li S, Lin M, Li Z, He J, Qiu J, Zhang J. Interleukin-17 and vascular endothelial growth factor: new biomarkers for the diagnosis of papillary thyroid carcinoma in patients with Hashimoto's thyroiditis. J Int Med Res 2022; 50:3000605211067121. [PMID: 35023376 PMCID: PMC8793523 DOI: 10.1177/03000605211067121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective The incidences of papillary thyroid carcinoma (PTC) and Hashimoto’s thyroiditis (HT) have shown increasing trends. Numerous studies have shown a close relationship between the two diseases, but the exact mechanism linking PTC with HT is still unclear. Interleukin-17 (IL-17) plays an important role in the development of malignant tumors. However, information on the association between IL-17 and thyroid disease is lacking. Methods Tissue samples were collected from patients with thyroid diseases admitted to the thyroid surgery department of our hospital between May 2015 and December 2017. The characteristics of the thyroid were observed by ultrasonography, hematoxylin-eosin staining, enzyme-linked immunosorbent assays, and immunohistochemistry. Results We found that HT with carcinoma (HTC) showed unique characteristics in two-dimensional ultrasound images. Moreover, IL-17 and vascular endothelial growth factor (VEGF) levels showed gradually increasing trends during the process of HT malignant transformation, with a significant positive correlation between the two cytokines. Serum IL-17 and VEGF levels could distinguish between HTC and HT with benign adenoma. Conclusion Our data suggest that serum IL-17 and VEGF levels may represent novel biomarkers for the diagnosis of HT malignant nodules.
Collapse
Affiliation(s)
- Shuiping Li
- Department of Ultrasonography, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Shilin Li
- Department of Ultrasonography, Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Min Lin
- Department of Ultrasonography, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Zuolin Li
- Department of Ultrasonography, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Jinghua He
- Department of Ultrasonography, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Jincheng Qiu
- Department of Ultrasonography, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Jiantang Zhang
- Department of Ultrasonography, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| |
Collapse
|
49
|
Jafarzadeh A, Noori M, Sarrafzadeh S, Tamehri Zadeh SS, Nemati M, Chatrabnous N, Jafarzadeh S, Hamblin MR, Jafari Najaf Abadi MH, Mirzaei H. MicroRNA-383: A tumor suppressor miRNA in human cancer. Front Cell Dev Biol 2022; 10:955486. [PMID: 36313570 PMCID: PMC9608775 DOI: 10.3389/fcell.2022.955486] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/23/2022] [Indexed: 02/05/2023] Open
Abstract
Downregulated expression of anti-tumor miR-383 has been found in many kinds of cancer. MiR-383 family members can directly target the 3'-untranslated region (3'-UTR) of the mRNA of some pro-tumor genes to attenuate several cancer-related processes, including cell proliferation, invasion, migration, angiogenesis, immunosuppression, epithelial-mesenchymal transition, glycolysis, chemoresistance, and the development of cancer stem cells, whilst promoting apoptosis. Functionally, miR-383 operates as a tumor inhibitor miRNA in many types of cancer, including breast cancer, hepatocellular carcinoma, gastric cancer, pancreatic cancer, colorectal cancer, esophageal cancer, lung cancer, head and neck cancer, glioma, medulloblastoma, melanoma, prostate cancer, cervical cancer, oral squamous cell carcinoma, thyroid cancer, and B-cell lymphoma. Both pro-tumor and anti-tumor effects have been attributed to miR-383 in ovarian cancer. However, only the pro-tumor effects of miR-383 were reported in cholangiocarcinoma. The restoration of miR-383 expression could be considered a possible treatment for cancer. This review discusses the anti-tumor effects of miR-383 in human cancers, emphasizing their downstream target genes and potential treatment approaches.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Majid Noori
- Golestan Hospital Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sarrafzadeh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Mohammad Hassan Jafari Najaf Abadi
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| |
Collapse
|
50
|
Diversity and heterogeneity of immune states in non-small cell lung cancer and small cell lung cancer. PLoS One 2021; 16:e0260988. [PMID: 34855926 PMCID: PMC8638918 DOI: 10.1371/journal.pone.0260988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Blood-based biomarkers including systemic inflammation (SI) indicators or circulating factors (cytokines, chemokines, or growth factors) are associated with a poor prognosis for lung cancer patients. Collectively these biomarkers can predict the immune state of a patient. We wanted to define and compare the immune states of small cell and non-small cell lung cancer patients, in the hopes that the information gained could lead to overall improvements in patient care and outcomes. Specimens and data from 235 patients was utilized, 49 surgically resected non-small cell lung cancer (NSCLC) patients with no evidence of disease (DF), 135 advanced non-small cell lung cancer (NSCLC), 51 small cell lung cancer (SCLC). SI markers neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte (PLR), systemic inflammation index (SII), and systemic inflammation response index (SIRI) were determined from blood counts. Forty-seven plasma cytokines were measured using a multiplex bead-based assay. Progression-free survival (PFS) and overall survival (OS) were assessed using Kaplan-Meier and Cox Proportional Hazards models. NSCLC patients had significantly high levels of SI markers than SCLC and DF patients, while NLR, PLR and SII were also higher in SCLC than DF patients. SI optimized marker values to differentiate SI value were; 6.04 (NLR), 320 (PLR), 1615 (SII), and 7.3 (SIRI). Elevated levels NLR (p<0.001), PLR (p<0.001), and SII (p = 0.018) were associated with a worse PFS and OS in NSCLC, while none of the markers were associated with PFS in SCLC patients. NSCLC patients with a poor outcome displayed heterogeneous immune states relative to systemic inflammation and circulating IL-6 markers. These groups could be distinguished based on the cytokines IL-8, TNFα, and IL-27. We identified heterogeneity of immune states in SCLC and NSCLC patients and in NSCLC patients with the poorest prognosis. This heterogeneity could be exploited to improve outcomes for these patients.
Collapse
|