1
|
Wu X, Borjihan Q, Su Y, Bai H, Hu X, Wang X, Kang J, Dong A, Yang YW. Supramolecular Switching-Enabled Quorum Sensing Trap for Pathogen-Specific Recognition and Eradication to Treat Enteritis. J Am Chem Soc 2024; 146:35402-35415. [PMID: 39665393 DOI: 10.1021/jacs.4c14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Intestinal bacterial infections have become a significant threat to human health. However, the current typical antibiotic-based therapies not only contribute to drug resistance but also disrupt gut microbiota balance, resulting in additional adverse effects on life activities. There is an urgent need to develop new antibacterial materials that selectively eliminate pathogenic bacteria without disrupting beneficial bacterial communities or promoting drug resistance. Herein, we utilize bacterial quorum sensing (QS), a universal mechanism for regulating community behavior, to develop a supramolecular QS trap by encapsulating cucurbit[7]uril (CB[7]) on 1-vinyl-3-pentylimidazolium bromide ([VPIM]Br) to form a supramolecular switch ([VPIM]Br⊂CB[7]) through host-guest interactions followed by grafting it onto bacterial cell surfaces using atom transfer radical polymerization. Subsequently, the matched pathogens are recognized and aggregated through interbacterial QS signals. Furthermore, the addition of amantadine (AD) facilitates the release of [VPIM]Br by competitive binding of CB[7] on [VPIM]Br⊂CB[7] for sterilization. This QS trap specifically triggers the self-aggregation and efficient elimination of matched bacteria. The [VPIM]Br⊂CB[7]-based trap can increase the diversity and abundance of intestinal microorganisms in mice, effectively treating Escherichia coli K88-induced intestinal damage without perturbing gut microbiota balance. This supramolecular-switched QS trap opens up a promising avenue to specifically recognize and eradicate pathogens for the antibiotic-free treatment of intestinal bacterial infections and other inflammatory diseases.
Collapse
Affiliation(s)
- Xiaojie Wu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Qinggele Borjihan
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, Inner Mongolia, P. R. China
| | - Yueying Su
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Xinshang Hu
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Xin Wang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 Daxue West Road, Hohhot 010021, P. R. China
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
2
|
Pello E, Kainulainen L, Vakkilainen M, Klemetti P, Taskinen M, Mäkitie O, Vakkilainen S. Shorter birth length and decreased T-cell production and function predict severe infections in children with non-severe combined immunodeficiency cartilage-hair hypoplasia. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100190. [PMID: 38187867 PMCID: PMC10770609 DOI: 10.1016/j.jacig.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 01/09/2024]
Abstract
Background Cartilage-hair hypoplasia (CHH) is a syndromic inborn error of immunity caused by variants in the RMRP gene. Disease manifestations vary, and their ability to predict outcome is uncertain. The optimal management of infants with CHH who do not fulfill classical severe combined immunodeficiency (SCID) criteria is unknown. Objective We described longitudinal changes in lymphocyte counts during childhood and explored correlations of early childhood clinical and laboratory features with clinical outcomes on long-term follow-up of CHH patients. Methods Immunologic laboratory parameters, birth length, the presence of Hirschsprung disease, and severe anemia correlated to the primary end points of respiratory and severe infections. We implemented traditional statistical methods and machine learning techniques. Results Thirty-two children with CHH were followed up for 2.7 to 22.1 years (median, 8.2 years, in total 331.3 patient-years). None of the patients had classical SCID. Median lymphocyte subclass counts, apart from CD16+/56+ cells, were subnormal throughout childhood, but did not show age-related decline seen in healthy children. Low immunoglobulin levels were uncommon and often transient. Respiratory and/or severe infections developed in 14 children, 8 of whom had low naive T-cell counts, absent T-cell receptor excision circles, and/or partial "leaky" SCID-level lymphopenia. Shorter birth length correlated with lower lymphocyte counts and the occurrence of infections. Of the laboratory parameters, decreased naive T-cell counts and abnormal lymphocyte proliferation responses contributed most to the development of severe infections. In addition, all participants with absent T-cell receptor excision circles developed severe infections. Opportunistic infections occurred only in children with leaky SCID-level lymphopenia. Conclusions Shorter birth length and a combination of laboratory abnormalities can predict the development of severe infections in children with CHH.
Collapse
Affiliation(s)
- Eetu Pello
- Children and Adolescents, Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Leena Kainulainen
- Department of Pediatrics and Adolescents, Turku University Hospital, University of Turku, Turku, Finland
| | | | - Paula Klemetti
- Children and Adolescents, Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mervi Taskinen
- Children and Adolescents, Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation (SCT), Children’s Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Outi Mäkitie
- Children and Adolescents, Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Svetlana Vakkilainen
- Children and Adolescents, Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Ruotsalainen AL, Tejesvi MV, Vänni P, Suokas M, Tossavainen P, Pirttilä AM, Talvensaari-Mattila A, Nissi R. Child type 1 diabetes associated with mother vaginal bacteriome and mycobiome. Med Microbiol Immunol 2022; 211:185-194. [PMID: 35701558 PMCID: PMC9304052 DOI: 10.1007/s00430-022-00741-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/18/2022] [Indexed: 10/27/2022]
Abstract
Mother vaginal microbes contribute to microbiome of vaginally delivered neonates. Child microbiome can be associated with autoimmune diseases, such as type 1 diabetes (T1D). We collected vaginal DNA samples from 25 mothers with a vaginally delivered child diagnosed with T1D and samples from 24 control mothers who had vaginally delivered a healthy child and analyzed bacteriome and mycobiome of the samples. The total DNA of the samples was extracted, and ribosomal DNA regions (16S for bacteria, ITS2 for fungi) were amplified, followed by next-generation sequencing and machine learning. We found that alpha-diversity of bacteriome was increased (P < 0.002), whereas alpha-diversity of mycobiome was decreased (P < 0.001) in mothers with a diabetic child compared to the control mothers. Beta-diversity analysis suggested differences in mycobiomes between the mother groups (P = 0.001). Random forest models were able to effectively predict diabetes and control status of unknown samples (bacteria: 0.86 AUC, fungi: 0.96 AUC). Our data indicate several fungal genera and bacterial metabolic pathways of mother vaginal microbiome to be associated with child T1D. We suggest that early onset of T1D in a child has a relationship with altered mother vaginal microbiome and that both bacteriome and mycobiome contribute to this shift.
Collapse
Affiliation(s)
- A L Ruotsalainen
- Department of Ecology and Genetics, University of Oulu, POB 3000, 90014, Oulu, Finland.
| | - M V Tejesvi
- Department of Ecology and Genetics, University of Oulu, POB 3000, 90014, Oulu, Finland.,Genobiomics LLC, Oulu, Finland
| | - P Vänni
- Genobiomics LLC, Oulu, Finland
| | - M Suokas
- Department of Ecology and Genetics, University of Oulu, POB 3000, 90014, Oulu, Finland.,Biocenter Oulu Sequencing Center, University of Oulu, POB 8000, 90014, Oulu, Finland
| | - P Tossavainen
- Department of Pediatrics, PEDEGO Research Unit and Medical Research Center, University of Oulu and Oulu University Hospital, PO Box 23, 90029 OYS, Oulu, Finland
| | - A M Pirttilä
- Department of Ecology and Genetics, University of Oulu, POB 3000, 90014, Oulu, Finland
| | - A Talvensaari-Mattila
- Department of Obstetrics and Gynecology, University of Oulu, PL 23, FI90029, Oulu, Finland
| | - R Nissi
- Department of Obstetrics and Gynecology, University of Oulu, PL 23, FI90029, Oulu, Finland
| |
Collapse
|
4
|
Tajbakhsh A, Gheibihayat SM, Taheri RA, Fasihi-Ramandi M, Bajestani AN, Taheri A. Potential diagnostic and prognostic of efferocytosis-related unwanted soluble receptors/ligands as new non-invasive biomarkers in disorders: a review. Mol Biol Rep 2022; 49:5133-5152. [PMID: 35419645 DOI: 10.1007/s11033-022-07224-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
Efferocytosis is the process by which apoptotic cells are removed without inflammation to maintain tissue homeostasis, prevent unwanted inflammatory responses, and inhibit autoimmune responses. Coordination of efferocytosis occurs via many surfaces and chemotactic molecules and adaptors. Recently, soluble positive or negative mediators of efferocytosis, have been more noticeable as non-invasive valuable biomarkers in prognosis and targeted therapy. These soluble factors can be detected in different bodily fluids, such as serum, plasma, and urine as a non-invasive method. There are lots of studies that have tried to show the importance of receptors and ligands in disorders; while a few studies tried to indicate the importance of soluble forms of receptors/ligands and their clinical aspects as a systemic compound and shedding of targets related to efferocytosis. Some of these soluble forms also can be as sensitive as specific biomarkers for certain diseases compared with routine biomarkers, such as soluble circulatory Lectin-like oxidized low-density lipoprotein receptor-1 vs. troponin T in the acute coronary syndrome. Thus, this review tried to gain more understanding about efferocytosis-related unwanted soluble receptors/ligands, their roles, the clinical significance, and potential for diagnosis, and prognosis related to different diseases.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Molecular Biology Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abolfazl Nesaei Bajestani
- Department of Medical Genetics, Ayatollah Madani Hospital, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abolfazl Taheri
- School of Medicine, New Hearing Technologies Research Center, Baghiyyatollah Al-Azam Hospital, Baqiyatallah University of Medical Sciences, Tehran, Iran.
- Department of ENT, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Suresh S, Zafack J, Pham-Huy A, Derfalvi B, Sadarangani M, McConnell A, Tapiéro B, Halperin SA, De Serres G, M Pernica J, Top KA. Physician vaccination practices in mild to moderate inborn errors of immunity and retrospective review of vaccine completeness in IEI: results from the Canadian Immunization Research Network. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:32. [PMID: 35397595 PMCID: PMC8994318 DOI: 10.1186/s13223-022-00667-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/08/2022] [Indexed: 11/26/2022]
Abstract
Background and objectives Safety and effectiveness concerns may preclude physicians from recommending vaccination in mild/moderate inborn errors of immunity (IEI). This study describes attitudes and practices regarding vaccination among physicians who care for patients with mild/moderate B cell or mild/moderate combined immunodeficiencies (CID) and vaccination completeness among patients diagnosed with IEIs. Methods Canadian physicians caring for children with IEI were surveyed about attitudes and practices regarding vaccination in mild/moderate IEI. Following informed consent, immunization records of pediatric patients with IEI evaluated before 7 years of age were reviewed. Vaccine completeness was defined at age 2 years as 4 doses of diphtheria-tetanus-pertussis (DTaP), 3 doses pneumococcal conjugate (PCV), and 1 dose measles-mumps-rubella (MMR) vaccines. At 7 years 5 doses of DTP and 2 doses MMR were required. Results Forty-five physicians from 8 provinces completed the survey. Most recommended inactivated vaccines for B cell deficiency: (84% (38/45) and CID (73% (33/45). Fewer recommended live attenuated vaccines (B cell: 53% (24/45), CID 31% (14/45)). Of 96 patients with IEI recruited across 7 centers, vaccination completeness at age 2 was 25/43 (58%) for predominantly antibody, 3/13 (23%) for CID, 7/35 (20%) for CID with syndromic features, and 4/4 (100%) for innate/phagocyte defects. Completeness at age 7 was 15%, 17%, 5%, and 33%, respectively. Conclusion Most physicians surveyed recommended inactivated vaccines in children with mild to moderate IEI. Vaccine completeness for all IEI was low, particularly at age 7. Further studies should address the reasons for low vaccine uptake among children with IEI and whether those with mild-moderate IEI, where vaccination is recommended, eventually receive all indicated vaccines. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-022-00667-1.
Collapse
Affiliation(s)
- Sneha Suresh
- Division of Immunology, Department of Pediatrics, Edmonton Clinic Health Academy, 3-529, 11405 87 Ave, Edmonton, AB, T6G 1C9, Canada. .,Division of Infectious Disease and IHOPE, Department of Paediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada.
| | | | - Anne Pham-Huy
- Division of Infectious Diseases, Immunology and Allergy, Department of Paediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada
| | - Beata Derfalvi
- Division of Immunology, Departments of Paediatrics and Microbiology and Immunology, IWK Health Centre, Dalhousie University, Halifax, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Athena McConnell
- Division of Infectious Diseases, Department of Pediatrics, Jim Pattison Children's Hospital, University of Saskatchewan, Saskatoon, Canada
| | - Bruce Tapiéro
- Division of Infectious Diseases, Department of Pediatrics, CHU Sainte Justine, Université de Montreal, Montreal, Canada
| | - Scott A Halperin
- Departments of Paediatrics and Microbiology and Immunology, Canadian Center for Vaccinology IWK Health Centre, Dalhousie University, Halifax, Canada
| | - Gaston De Serres
- Department of Social and Preventive Medicine, Institut Nationale de Santé Publique du Québec, Université Laval, Québec, Canada
| | - Jeffrey M Pernica
- Division of Infectious Diseases, Department of Pediatrics, McMaster University, Hamilton, Canada
| | - Karina A Top
- Departments of Pediatrics and Community Health and Epidemiology, Canadian Center for Vaccinology, IWK Health Centre, Dalhousie University, Halifax, Canada.
| |
Collapse
|
6
|
Hetemäki I, Laakso S, Välimaa H, Kleino I, Kekäläinen E, Mäkitie O, Arstila TP. Patients with autoimmune polyendocrine syndrome type 1 have an increased susceptibility to severe herpesvirus infections. Clin Immunol 2021; 231:108851. [PMID: 34508889 PMCID: PMC8425955 DOI: 10.1016/j.clim.2021.108851] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022]
Abstract
Almost all patients with autoimmune polyendocrine syndrome type 1 (APS-1) have neutralizing antibodies against type 1 interferons (IFN), important mediators of antiviral defense. Recently, neutralizing anti-IFN antibodies were shown to be a risk factor of severe COVID-19. Here we show in a cohort of 44 patients with APS-1 that higher titers of neutralizing anti-IFNα4 antibodies are associated with a higher and earlier incidence of VZV reactivation (herpes zoster). The patients also present with uncommonly severe clinical sequelae of herpetic infections. APS-1 patients had decreased humoral immune responses to varicella zoster virus, but cellular responses were comparable to healthy controls. These results suggest that blocking the type I interferon pathway in patients with APS-1 patients leads to a clinically significant immune deficiency, and susceptibility to herpesviruses should be taken into account when treating patients with APS-1.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Saila Laakso
- Folkhälsan Institute of Genetics, Helsinki, Finland; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hannamari Välimaa
- Department of Virology, University of Helsinki, Helsinki, Finland; Department of Oral and Maxillofacial Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Iivari Kleino
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Molecular Medicine, Karolinska Institutet, Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - T Petteri Arstila
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
7
|
van den Biggelaar RHGA, van der Maas L, Meiring HD, Pennings JLA, van Eden W, Rutten VPMG, Jansen CA. Proteomic analysis of chicken bone marrow-derived dendritic cells in response to an inactivated IBV + NDV poultry vaccine. Sci Rep 2021; 11:12666. [PMID: 34135356 PMCID: PMC8209092 DOI: 10.1038/s41598-021-89810-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
Inactivated poultry vaccines are subject to routine potency testing for batch release, requiring large numbers of animals. The replacement of in vivo tests for cell-based alternatives can be facilitated by the identification of biomarkers for vaccine-induced immune responses. In this study, chicken bone marrow-derived dendritic cells were stimulated with an inactivated vaccine for infectious bronchitis virus and Newcastle disease virus, as well as inactivated infectious bronchitis virus only, and lipopolysaccharides as positive control, or left unstimulated for comparison with the stimulated samples. Next, the cells were lysed and subjected to proteomic analysis. Stimulation with the vaccine resulted in 66 differentially expressed proteins associated with mRNA translation, immune responses, lipid metabolism and the proteasome. For the eight most significantly upregulated proteins, mRNA expression levels were assessed. Markers that showed increased expression at both mRNA and protein levels included PLIN2 and PSMB1. Stimulation with infectious bronchitis virus only resulted in 25 differentially expressed proteins, which were mostly proteins containing Src homology 2 domains. Stimulation with lipopolysaccharides resulted in 118 differentially expressed proteins associated with dendritic cell maturation and antimicrobial activity. This study provides leads to a better understanding of the activation of dendritic cells by an inactivated poultry vaccine, and identified PLIN2 and PSMB1 as potential biomarkers for cell-based potency testing.
Collapse
Affiliation(s)
- Robin H G A van den Biggelaar
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Hugo D Meiring
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Utrecht, The Netherlands
| | - Willem van Eden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P M G Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|