1
|
Zhao Y, Zhang H, Wang W, Shen G, Wang M, Liu Z, Zhao J, Li J. The immune-related gene CD5 is a prognostic biomarker associated with the tumor microenvironment of breast cancer. Discov Oncol 2025; 16:39. [PMID: 39804513 PMCID: PMC11729608 DOI: 10.1007/s12672-024-01616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/21/2024] [Indexed: 01/16/2025] Open
Abstract
The occurrence and progression of breast cancer (BCa) are complex processes involving multiple factors and multiple steps. The tumor microenvironment (TME) plays an important role in this process, but the functions of immune components and stromal components in the TME require further elucidation. In this study, we obtained the RNA-seq data of 1086 patients from The Cancer Genome Atlas (TCGA) database. We calculated the proportions of tumor-infiltrating immune cells (TICs) and immune and stromal components using the CIBERSORT and ESTIMATE methods, and we screened differentially expressed genes (DEGs). Univariate Cox regression analysis of overall survival was performed on the DEGs, and a protein-protein interaction network of their protein products was generated. Finally, the hub gene CD5 was obtained. High CD5 expression was found to be associated with longer survival than low expression. Gene set enrichment analysis showed that DEGs upregulated in the high-CD5 expression group were mainly enriched in tumor- and immune-related pathways, while those upregulated in the low-expression group were enriched in protein export and lipid synthesis. TIC analysis showed that CD5 expression was positively correlated with the infiltration of CD8+ T cells, activated memory CD4+ T cells, gamma delta T cells, and M1 macrophages and negatively correlated with the infiltration of M2 macrophages. CD5 can increase anticancer immune cell infiltration and reduce M2 macrophage infiltration. These results suggest that CD5 is likely a potential prognostic biomarker and therapeutic target, providing novel insights into the treatment and prognostic assessment of BCa.
Collapse
Affiliation(s)
- Yi Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai, China
| | - Hengheng Zhang
- Graduate School of Qinghai University, Xining, 810000, Qinghai Province, People's Republic of China
| | - Wenwen Wang
- State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai, China
| | - Miaozhou Wang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai, China
| | - Zhen Liu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, Qinghai, China
| | - Jinming Li
- Graduate School of Qinghai University, Xining, 810000, Qinghai Province, People's Republic of China.
| |
Collapse
|
2
|
Choubey RB, Sweta, Vibha, Sharma A, Rai AK. Immunotherapy to CD5, a T-cell antigen having roles from development to peripheral function: Future prospective and challenges. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 144:431-460. [PMID: 39978974 DOI: 10.1016/bs.apcsb.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
CD5 is a pan T-cell marker expressed by all T-cells and a subset of B-cells, i.e., B1a cells. The significance of CD5 is evident from its functions, starting from T-cell development, antigen priming, activation, and effector response to the maintenance of tolerance. Varying CD5 expression and signaling in response to TCR-pMHC complex avidity is associated with thymic selection, competency, and effector response. Altered CD5 expression is associated with immunological and diseased conditions such as CD5-/low infiltrating T-cells in solid tumors, CD5hi T-cells in anergy conditions, CD5-/low phenotype of leukemic T-cells, high CD5 expression by regulatory T-cells, CD5lowphenotype of autoreactive T-cells, etc. A low CD5 expression triggers activation-induced cell death upon antigenic stimulation. There are three forms of CD5: membrane CD5 (mCD5), intracellular CD5 (cCD5) and soluble CD5 (sCD5). mCD5 and cCD5 are generated from conventional and non-conventional mRNA variants, i.e., E1A and E1B, respectively. E1B variant encoding cCD5 is derived from a human endogenous retrovirus segment inserted 8.2 kb upstream to conventional E1A exon. Various conditions, such as leukemia, exposure to hydrocarbon, hypoxia, etc., can trigger E1B transcription and, thus, cCD5 expression. Blocking mCD5 with mAb can restore immune response, effectively targeting cancer. Understanding cCD5, linked to leukemogenesis, can offer new avenues of immunotherapy.
Collapse
Affiliation(s)
- Ranjeet Bahadur Choubey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Sweta
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Vibha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Avika Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Allahabad, UP, India.
| |
Collapse
|
3
|
Li X, Yao X, Wen J, Chen Q, Zhu Z, Zhang X, Wang S, Lan W, Huang Y, Tang S, Zhou X, Han X, Zhang T. The application of sphingomyelin in mediating the causal role of the T-cell surface glycoprotein CD5 in Crohn's disease: A two-step Mendelian randomization study. Medicine (Baltimore) 2024; 103:e40513. [PMID: 39560554 PMCID: PMC11576039 DOI: 10.1097/md.0000000000040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/25/2024] [Indexed: 11/20/2024] Open
Abstract
To examine the possible causative association between Crohn disease (CD) and the T-cell surface glycoprotein CD5 and to ascertain whether sphingomyelin (SM) functions as a mediator. We conducted a two-step Mendelian randomization (MR) study to further explore the pathogenesis of Crohn and its related targets. MR study was performed on CD5 and CD using summary-level data from a genome-wide association study. Additionally, by employing a two-step MR study method, we determined that SM might mediate the causal effect of CD5 on CD. There was a favorable correlation between the surface glycoprotein CD5 on T cells and vulnerability to CD, and SM mediated the causal effect of CD5 on CD (the mediating effect accounts for 9.2%). Our study revealed that CD5 and CD are causally related, with SM mediating a small fraction of the impact (approximately 9.2%). The mediating function of SM in the link between CD5 and CD is anticipated to be realized through the regulation of immune cell transportation, apoptosis of intestinal barrier cells, and maintenance of the intestinal microenvironment.
Collapse
Affiliation(s)
- Xiao Li
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xin Yao
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jieying Wen
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qiaoling Chen
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ziming Zhu
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xinyue Zhang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Song Wang
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Weixuan Lan
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yunsi Huang
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Shanneng Tang
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xuan Zhou
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xuedong Han
- The graduate School of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Tao Zhang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
4
|
Wang Q, Yang Y, Chen Z, Li B, Niu Y, Li X. Lymph Node-on-Chip Technology: Cutting-Edge Advances in Immune Microenvironment Simulation. Pharmaceutics 2024; 16:666. [PMID: 38794327 PMCID: PMC11124897 DOI: 10.3390/pharmaceutics16050666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Organ-on-a-chip technology is attracting growing interest across various domains as a crucial platform for drug screening and testing and is set to play a significant role in precision medicine research. Lymph nodes, being intricately structured organs essential for the body's adaptive immune responses to antigens and foreign particles, are pivotal in assessing the immunotoxicity of novel pharmaceuticals. Significant progress has been made in research on the structure and function of the lymphatic system. However, there is still an urgent need to develop prospective tools and techniques to delve deeper into its role in various diseases' pathological and physiological processes and to develop corresponding immunotherapeutic therapies. Organ chips can accurately reproduce the specific functional areas in lymph nodes to better simulate the complex microstructure of lymph nodes and the interactions between different immune cells, which is convenient for studying specific biological processes. This paper reviews existing lymph node chips and their design approaches. It discusses the applications of the above systems in modeling immune cell motility, cell-cell interactions, vaccine responses, drug testing, and cancer research. Finally, we summarize the challenges that current research faces in terms of structure, cell source, and extracellular matrix simulation of lymph nodes, and we provide an outlook on the future direction of integrated immune system chips.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Q.W.); (Y.Y.); (Z.C.); (B.L.); (Y.N.)
| |
Collapse
|
5
|
Alotaibi FM, Min WP, Koropatnick J. CD5 blockade, a novel immune checkpoint inhibitor, enhances T cell anti-tumour immunity and delays tumour growth in mice harbouring poorly immunogenic 4T1 breast tumour homografts. Front Immunol 2024; 15:1256766. [PMID: 38487537 PMCID: PMC10937348 DOI: 10.3389/fimmu.2024.1256766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
CD5 is a member of the scavenger receptor cysteine-rich superfamily that is expressed on T cells and a subset of B cells (B1a) cell and can regulate the T cell receptor signaling pathway. Blocking CD5 function may have therapeutic potential in treatment of cancer by enhancing cytotoxic T lymphocyte recognition and ablation of tumour cells. The effect of administering an anti-CD5 antibody to block or reduce CD5 function as an immune checkpoint blockade to enhance T cell anti-tumour activation and function in vivo has not been explored. Here we challenged mice with poorly immunogenic 4T1 breast tumour cells and tested whether treatment with anti-CD5 monoclonal antibodies (MAb) in vivo could enhance non-malignant T cell anti-tumour immunity and reduce tumour growth. Treatment with anti-CD5 MAb resulted in an increased fraction of CD8+ T cells compared to CD4+ T cell in draining lymph nodes and the tumour microenvironment. In addition, it increased activation and effector function of T cells isolated from spleens, draining lymph nodes, and 4T1 tumours. Furthermore, tumour growth was delayed in mice treated with anti-CD5 MAb. These data suggest that use of anti-CD5 MAb as an immune checkpoint blockade can both enhance activation of T cells in response to poorly immunogenic antigens and reduce tumour growth in vivo. Exploration of anti-CD5 therapies in treatment of cancer, alone and in combination with other immune therapeutic drugs, is warranted.
Collapse
Affiliation(s)
- Faizah M. Alotaibi
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Alahsa, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Wei-Ping Min
- Department of Oncology, The University of Western Ontario, London, ON, Canada
| | - James Koropatnick
- Department of Oncology, The University of Western Ontario, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
- Cancer Research Laboratory Program, London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
6
|
Kumari S, Sahu S, Singh B, Gupta S, Kureel AK, Srivastava A, Rikhari D, Srivastava S, Rai AK. HIF-1α regulates the expression of the non-conventional isoform of the cd5 gene in T cells under the hypoxic condition: A potential mechanism for CD5 neg/low phenotype of infiltrating cells in solid tumors. Cell Immunol 2023; 391-392:104755. [PMID: 37544247 DOI: 10.1016/j.cellimm.2023.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Abstract
CD5, a T-cell receptor (TCR) negative regulator, is reduced on the surface of CD8+ lymphocytes in the tumor microenvironment (TME). Reduced surface CD5 expression (sCD5) occurs due to the preferential transcription of HERV-E derived exon E1B, i.e., anon-conventional formofthe cd5gene instead of its conventional exon E1A. A tumor employs several mechanisms to evade anti-tumor response, and hypoxia is one such mechanism that prevails in the TME and modulates the infiltrated T lymphocytes. We identified hypoxia response elements (HREs) upstream of E1B. We showed binding of HIF-1α onto these HREs and increased E1B mRNA expression in hypoxic T cells. This results in decreased sCD5 expression and increased cytoplasmic accumulation in T cells. We also validated our study in a solid tumor, i.e., colorectal cancer (CRC) patient samples. This hypoxia-driven mechanism reduces the surface CD5 expression on infiltrated T-cells in solid tumors.
Collapse
Affiliation(s)
- Smita Kumari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad (M.N.N.I.T. Allahabad), Prayagraj, Uttar Pradesh 211004, India
| | - Srishti Sahu
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad (M.N.N.I.T. Allahabad), Prayagraj, Uttar Pradesh 211004, India
| | - Bharat Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad (M.N.N.I.T. Allahabad), Prayagraj, Uttar Pradesh 211004, India
| | - Swarnima Gupta
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad (M.N.N.I.T. Allahabad), Prayagraj, Uttar Pradesh 211004, India
| | - Amit Kumar Kureel
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad (M.N.N.I.T. Allahabad), Prayagraj, Uttar Pradesh 211004, India
| | - Ankit Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad (M.N.N.I.T. Allahabad), Prayagraj, Uttar Pradesh 211004, India
| | - Deeksha Rikhari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad (M.N.N.I.T. Allahabad), Prayagraj, Uttar Pradesh 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad (M.N.N.I.T. Allahabad), Prayagraj, Uttar Pradesh 211004, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad (M.N.N.I.T. Allahabad), Prayagraj, Uttar Pradesh 211004, India.
| |
Collapse
|
7
|
Caracciolo D, Mancuso A, Polerà N, Froio C, D'Aquino G, Riillo C, Tagliaferri P, Tassone P. The emerging scenario of immunotherapy for T-cell Acute Lymphoblastic Leukemia: advances, challenges and future perspectives. Exp Hematol Oncol 2023; 12:5. [PMID: 36624522 PMCID: PMC9828428 DOI: 10.1186/s40164-022-00368-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a challenging pediatric and adult haematologic disease still associated with an unsatisfactory cure rate. Unlike B-ALL, the availability of novel therapeutic options to definitively improve the life expectancy for relapsed/resistant patients is poor. Indeed, the shared expression of surface targets among normal and neoplastic T-cells still limits the efficacy and may induce fratricide effects, hampering the use of innovative immunotherapeutic strategies. However, novel monoclonal antibodies, bispecific T-cell engagers (BTCEs), and chimeric antigen receptors (CAR) T-cells recently showed encouraging results and some of them are in an advanced stage of pre-clinical development or are currently under investigation in clinical trials. Here, we review this exciting scenario focusing on most relevant advances, challenges, and perspectives of the emerging landscape of immunotherapy of T-cell malignancies.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Froio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Ng WL, Ansell SM, Mondello P. Insights into the tumor microenvironment of B cell lymphoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:362. [PMID: 36578079 PMCID: PMC9798587 DOI: 10.1186/s13046-022-02579-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
The standard therapies in lymphoma have predominantly focused on targeting tumor cells with less of a focus on the tumor microenvironment (TME), which plays a critical role in favoring tumor growth and survival. Such an approach may result in increasingly refractory disease with progressively reduced responses to subsequent treatments. To overcome this hurdle, targeting the TME has emerged as a new therapeutic strategy. The TME consists of T and B lymphocytes, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and other components. Understanding the TME can lead to a comprehensive approach to managing lymphoma, resulting in therapeutic strategies that target not only cancer cells, but also the supportive environment and thereby ultimately improve survival of lymphoma patients. Here, we review the normal function of different components of the TME, the impact of their aberrant behavior in B cell lymphoma and the current TME-direct therapeutic avenues.
Collapse
Affiliation(s)
- Wern Lynn Ng
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Stephen M. Ansell
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Patrizia Mondello
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| |
Collapse
|