1
|
Theofilou VI, Ghita I, Elnaggar M, Chaisuparat R, Papadimitriou JC, Bentzen SM, Dyalram D, Lubek JE, Ord RA, Younis RH. Histological pattern of tumor inflammation and stromal density correlate with patient demographics and immuno-oncologic transcriptional profile in oral squamous cell carcinoma. FRONTIERS IN ORAL HEALTH 2024; 5:1408072. [PMID: 38903181 PMCID: PMC11187265 DOI: 10.3389/froh.2024.1408072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/07/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Oral squamous cell carcinoma (OSCC) is the most prevalent oral malignancy, with emerging interest in the characterization of its tumor microenvironment. Herein, we present a comprehensive histological analysis of OSCC stromal density and inflammation and their relationship with patient demographics, clinicopathologic features and immuno-oncologic signatures. Materials-methods Eighty-seven completely excised OSCC tissues were prospectively collected and scored for histopathologic inflammatory subtypes [HIS]-inflamed (INF), immune-excluded (IE) and immune-desert (ID), peritumoral stromal inflammation (PTSI), and peritumoral stromal fibrosis (PTSF). Scoring of inflammation was complemented by Semaphorin 4D immunohistochemistry. NanoString differential gene expression (DGE) analysis was conducted for eight OSCC cases representative of the inflammatory and stromal subtypes and the demographic groups. Results PTSF correlated with male gender (p = 0.0043), smoking (p = 0.0455), alcohol consumption (p = 0.0044), increased tumor size (p = 0.0054), and advanced stage (p = 0.002). On the contrary, PTSI occurred predominantly in females (p = 0.0105), non-drinkers (p = 0.0329), and small tumors (p = 0.0044). Transcriptionally, decreased cytokine signaling, and oncogenic pathway activation were observed in HIS-IE. Smokers and males displayed decreased global immune-cell levels and myeloid-cell predominance. Conclusion Our work describes OSCC stromal and inflammatory phenotypes in correlation with distinct patient groups and DGE, highlighting the translational potential of characterizing the tumor microenvironment for optimal patient stratification.
Collapse
Affiliation(s)
- Vasileios Ionas Theofilou
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Ioana Ghita
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Manar Elnaggar
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Risa Chaisuparat
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - John C. Papadimitriou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Soren M. Bentzen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Biostatistics Core, Institute of Clinical and Translational Research, University of Maryland, Baltimore, MD, United States
- Biostatistics Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center,Baltimore, MD, United States
| | - Donita Dyalram
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Joshua E. Lubek
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Robert A. Ord
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Rania H. Younis
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Urumarudappa SKJ, Tran VNT, Oo HM, Suntiparpluacha M, Sampattavanich S, Rosa V, Ruangritchankul K, Ferreira JN, Chaisuparat R. Identifying potential immuno-oncology targets in salivary gland mucoepidermoid carcinoma based on inflammatory status and treatment response. J Oral Pathol Med 2023; 52:939-950. [PMID: 37756121 DOI: 10.1111/jop.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Mucoepidermoid carcinoma is a rare salivary gland malignant tumour. This study aimed to investigate inflammatory and immune signatures of mucoepidermoid carcinoma by identifying potential proteo-transcriptomic biomarkers towards the development of precision immuno-oncology treatment strategies. METHODS A total of 30 biopsies obtained from patients diagnosed with mucoepidermoid carcinoma between 2013 and 2022 were analysed after H&E staining for scoring of histological inflammatory stroma subtypes and inflammatory hotspots with QuPath. Multiplex immunofluorescence staining and NanoString nCounter PanCancer IO 360™ panel were used to assess stroma and tumour inflammation signatures in high grade mucoepidermoid carcinoma cases in the tumour microenvironment via proteomics and transcriptomics, respectively. RESULTS Inflammatory cells within the histological inflammatory stroma inflammatory (HIS-INF/hot) tumour neighbourhoods were greater compared to the histological inflammatory stroma-immune desert (HIS-ID/cold) (p = 0.001). A similar trend was observed between treatment non-responders and responders in stroma neighbourhoods (p = 0.0625) and in stroma-to-interface inflammatory hotspots (p = 0.0081), indicating an augmented inflammatory response in hot tumours and non-responders. Furthermore, there were striking differences in the expression of pan-immune leukocyte marker CD45 between responders and non responders particularly in the tumour neighbourhoods (p = 0.0341), but such were not robust for PD-1 and macrophage fractions. Additionally, transcriptomic analysis revealed key differences in leukocyte activation profiles between responders and non-responders. CONCLUSION This preliminary report unveils the importance of assessing immune leukocyte cellular fractions and pathways for future prognostic biomarker discoveries in mucoepidermoid carcinoma as per the involvement of CD45-driven inflammatory and immune mediators in high grade mucoepidermoid carcinoma in non-responders to treatment. These findings will potentially contribute to the development of novel personalised immunotherapies.
Collapse
Affiliation(s)
- Santhosh Kumar J Urumarudappa
- Avatar Biotechnologies for Oral Health and Healthy Longevity, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Vy Ngoc Thuy Tran
- Oral Biology, International Graduate Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hay Mar Oo
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monthira Suntiparpluacha
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vinicius Rosa
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore, Singapore
| | | | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Elnaggar M, Chaisuparat R, Ghita I, Bentzen SM, Dyalram D, Ord RA, Lubek JE, Younis RH. Immuno-oncologic signature of malignant transformation in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136:612-622. [PMID: 37739913 DOI: 10.1016/j.oooo.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/25/2023] [Accepted: 07/02/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVE The purpose of this study is to identify the immuno-oncologic (IO) signature at the surgical tumor margin (TM) of oral squamous cell carcinoma (OSCC) that is involved in the process of malignant transformation. STUDY DESIGN Under institutional review board approval, TM of 73 OSCC were investigated using immunohistochemistry for the immune biomarker, programmed death ligand-1 (PD-L1). NanoString 770 IO-focused gene set was analyzed in 5 pairs of TM and invasive tumor (T). PD-L1 regulation in response to interferon-gamma (IFN-γ) was investigated in an oral potentially malignant cell line (OPMC). RESULTS Programmed death ligand-1 expression in the epithelial margin directly correlated with its expression in the underlying immune cells (P = .0082). Differential gene expression showed downregulation of PD-L1 and IFN-γ 6 gene signature in the TM relative to T pair.CD8 and macrophages were higher in TM. CNTFR, LYZ, C7, RORC, and FGF13 downregulation in T relative to TM. TDO2, ADAM12, MMP1, LAMC2, MB21D1, TYMP, OASL, COL5A1, exhausted_CD8, Tregs,and NK_CD56dim were upregulated in T relative to TM. Finally, IFN-γ induced upregulation of PD-L1 in the OPMC. CONCLUSIONS Our work suggests a role for IFN-γ in PD-L1 upregulation in OPMC and presents novel IO transcriptional signatures for frankly invasive OSCC relative to TM.
Collapse
Affiliation(s)
- Manar Elnaggar
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, USA; Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt; Department of Oral Pathology, Faculty of Dentistry, Arab Academy for Science and Technology, El Alamein, Egypt
| | - Risa Chaisuparat
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Ioana Ghita
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Soren M Bentzen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA; Biostatistics Core, Institute of Clinical and Translational Research, University of Maryland, Baltimore, MD, USA; Biostatistics Division, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Donita Dyalram
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, USA; Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Robert A Ord
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, USA; Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Joshua E Lubek
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, USA; Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Rania H Younis
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, USA; Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt; Division of Tumor Immunology and Immunotherapy, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, UMB, Maryland, USA; Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Liu X, Zhang C, Yang WH, Li SC, Wang RF, Zhang YB, Zhang ZL. Low expression of SEMA4D as a potential predictive molecular marker of poor survival in patients with melanoma combined with liver cancer. Oncol Lett 2023; 25:160. [PMID: 36936030 PMCID: PMC10017917 DOI: 10.3892/ol.2023.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/21/2022] [Indexed: 03/09/2023] Open
Abstract
This study explored the correlation between semaphorin 4D (SEMA4D) and the prognosis and survival time of patients with melanoma combined with liver cancer. A total of 272 patients were recruited, and clinical and follow-up data were recorded. The expression levels of SEMA4D and SEMA3B were determined. Pearson's χ2 test and Spearman's rank correlation coefficient were used to analyze the relationship between prognosis and the assessed parameters of melanoma patients. Univariate and multivariate Logistic regression and Cox proportional risk regression analyses were used for further analysis. Additionally, receiver operating characteristic curve and survival curves of subjects were plotted. The Pearson's χ2 test showed that the prognosis of melanoma patients was significantly correlated with age, tumor grade, and decreased SEMA4D expression. Additionally, Spearman's correlation coefficient analysis showed that age, tumor grade, and SEMA4D expression were significantly correlated with prognosis. Univariate logistic regression analysis showed that age and tumor grade, and SEMA4D expression, were significantly correlated with prognosis. Older patients, a higher tumor grade, and lower SEMA4D expression were associated with a poorer prognosis. Multivariate logistic regression analysis showed that older patients had a poorer prognosis, and patients with lower SEMA4D expression levels had a significantly worse prognosis than patients with higher SEMA4D expression levels. Kaplan-Meier analysis showed that the survival time of older patients was lower than that of the younger patients. The survival times of patients with lower SEMA4D expression levels were significantly lower than that of patients with higher SEMA4D expression levels. Multivariate Cox regression analysis showed that the survival time of older patients was lower than that of younger patients. The survival time of melanoma patients with low SEMA4D expression was significantly lower than that of patients with higher SEMA4D expression. SEMA4D was significantly associated with melanoma, and lower SEMA4D expression was associated with a poorer survival prognosis in melanoma patients.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Chong Zhang
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Wu-Han Yang
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Sheng-Chao Li
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Rui-Feng Wang
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yi-Bin Zhang
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Zhi-Lei Zhang
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
- Correspondence to: Dr Zhi-Lei Zhang, Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, 12 Chang'an District Health Road, Shijiazhuang, Hebei 050011, P.R. China, E-mail:
| |
Collapse
|
5
|
Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:33-92. [PMID: 36967154 DOI: 10.1016/bs.ircmb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs), which originated from hematopoietic stem cells, are heterogeneous population of cells that have different differentiation patterns and widely presented in tumor microenvironment. For tumor research, myeloid suppressor cells have received extensive attention since their discovery due to their specific immunosuppressive properties, and the mechanisms of immunosuppression and therapeutic approaches for MDSCs have been investigated in a variety of different types of malignancies. To improve the efficacy of treatment for head and neck squamous cell carcinoma (HNSCC), a disease with a high occurrence, immunotherapy has gradually emerged in after traditional surgery and subsequent radiotherapy and chemotherapy, and has made some progress. In this review, we introduced the mechanisms on the development, differentiation, and elimination of MDSCs and provided a detailed overview of the mechanisms behind the immunosuppressive properties of MDSCs. We summarized the recent researches on MDSCs in HNSCC, especially for targeting-MDSCs therapy and combination with other types of therapy such as immune checkpoint blockade (ICB). Furthermore, we looked at drug delivery patterns and collected the current diverse drug delivery systems for the improvement that contributed to therapy against MDSCs in HNSCC. Most importantly, we made possible outlooks for the future research priorities, which provide a basis for further study on the clinical significance and therapeutic value of MDSCs in HNSCC.
Collapse
|
6
|
Ghita I, Piperi E, Atamas SP, Bentzen SM, Ord RA, Dyalram D, Lubek JE, Younis RH. Cytokine profiling in plasma distinguishes the histological inflammatory subtype of head and neck squamous cell carcinoma and a novel regulatory role of osteopontin. FRONTIERS IN ORAL HEALTH 2022; 3:993638. [PMID: 36338570 PMCID: PMC9632968 DOI: 10.3389/froh.2022.993638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/18/2022] [Indexed: 12/05/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) can be classified according to the histological inflammatory subtype (HIS) into inflamed (HIS-INF) or immune excluded (HIS-IE). HIS-IE was previously associated with higher levels of soluble Semaphorin 4D (HsS4D) in plasma, and higher transcriptional levels of osteopontin (OPN) in the tumor tissue, compared to HIS-INF. The goal of the current study is to investigate whether the HIS inflammatory subtype can be distinguished by a differential cytokine panel in peripheral blood. Retrospectively collected five HIS-INF and five HIS-IE tumor tissue with paired plasma were included in the study. Five healthy donors (HD) and five autoimmune/chronic inflammatory conditions (AI/CI) were controls. The ELISA-Luminex™ system was used to detect 40 traditional cytokines in plasma. Human cytokine array (104 cytokines) was used for the conditioned medium (CM) of the HNSCC HN6 cell line. Semaphorin 4D (Sema4D) siRNA and recombinant human osteopontin (rh-OPN) were used to investigate the effect of OPN on Sema4D expression. The HIS-IE cytokine profile was higher than HIS-INF but comparable to AI/CI. HIS-INF had the lowest cytokine levels. HIS-IE was differentially higher in IP-10 and IL8 compared to HD, while HIS-INF was higher in IL-10. Sema4D inhibition in HN6 resulted in a decrease of OPN in the CM of HN6, and treatment with rh-OPN rescued Sema4D in HN6 cell lysate and associated CM. In conclusion, the current work demonstrates a novel association between the HIS subtypes and a differential pattern of cytokine expression in plasma. These findings can open new avenues for HNSCC patient stratification and hence provide better personalized treatment.
Collapse
Affiliation(s)
- Ioana Ghita
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Evangelia Piperi
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
- Department of Oral Medicine / Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Sergei P. Atamas
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine. Baltimore, MD, United States
| | - Soren M. Bentzen
- Department of Epidemiology and Public Health, Division of Biostatistics and Bioinformatics, University of Maryland School of Medicine. Baltimore, MD, United States
- Biostatistics Core, Institute of Clinical and Translational Research, University of Maryland, Baltimore, MD, United States
- Biostatistics Division, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Robert A. Ord
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Donita Dyalram
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Joshua E. Lubek
- Department of Oral and Maxillofacial Surgery, University of Maryland School of Dentistry, Baltimore, MD, United States
- Head and Neck Surgery Department of Oral and Maxillofacial Surgery, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Rania H. Younis
- Department of Oncology and Diagnostic Sciences, Division of Oral and Maxillofacial Pathology, University of Maryland School of Dentistry, Baltimore, MD, United States
- Division of Tumor immunology and Immunotherapy, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
7
|
Nojima S. Class IV semaphorins in disease pathogenesis. Pathol Int 2022; 72:471-487. [PMID: 36066011 DOI: 10.1111/pin.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022]
Abstract
Semaphorins are a large family of secreted and/or transmembrane proteins, originally identified as proteins that function in axon guidance during neuronal development. However, semaphorins play crucial roles in other physiological and pathological processes, including immune responses, angiogenesis, maintenance of tissue homeostasis, and cancer progression. Class IV semaphorins may be present as transmembrane and soluble forms and are implicated in the pathogenesis of various diseases. This review discusses recent progress on the roles of class IV semaphorins determined by clinical and experimental pathology studies.
Collapse
Affiliation(s)
- Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.,Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Teshima T, Kobayashi Y, Kawai T, Kushihara Y, Nagaoka K, Miyakawa J, Akiyama Y, Yamada Y, Sato Y, Yamada D, Tanaka N, Tsunoda T, Kume H, Kakimi K. Principal component analysis of early immune cell dynamics during pembrolizumab treatment of advanced urothelial carcinoma. Oncol Lett 2022; 24:265. [PMID: 35765279 PMCID: PMC9219027 DOI: 10.3892/ol.2022.13384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 11/15/2022] Open
Abstract
Immune checkpoint inhibitors have been approved as second-line therapy for patients with advanced urothelial carcinoma (UC). However, which patients will obtain clinical benefit remains to be determined. To identify predictive biomarkers for the pembrolizumab (PEM) response early during treatment, the present study investigated 31 patients with chemotherapy-resistant recurrent or metastatic UC who received 200 mg PEM intravenously every 3 weeks. Blood was taken just before the first dose and again before the second dose, and the peripheral blood mononuclear cells of all 31 pairs of blood samples were immune phenotyped by flow cytometry. Data were assessed by principal component analysis (PCA), correlation analysis and Cox proportional hazards modeling in order to comprehensively determine the effects of PEM on peripheral mononuclear immune cells. Absolute counts of CD45RA+CD27-CCR7- terminally differentiated CD8+ T cells and KLRG1+CD57+ senescent CD8+ T cells were significantly increased after PEM administration (P=0.042 and P=0.043, respectively). Senescent and exhausted CD4+ and CD8+ T cell dynamics were strongly associated with each other. By contrast, counts of monocytic myeloid-derived suppressor cells (mMDSCs) were not associated with other immune cell phenotypes. The results of PCA and non-hierarchical clustering of patients suggested that excessive T cell senescence and differentiation early during treatment were not necessarily associated with a survival benefit. However, decreased mMDSC counts after PEM were associated with improved overall survival. In conclusion, early on-treatment peripheral T cell status was associated with response to PEM; however, it was not associated with clinical benefit. By contrast, decreased peripheral mMDSC counts did predict improved overall survival.
Collapse
Affiliation(s)
- Taro Teshima
- Department of Urology, The University of Tokyo Hospital, Tokyo 113-8655, Japan.,Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Taketo Kawai
- Department of Urology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Yoshihiro Kushihara
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Koji Nagaoka
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Jimpei Miyakawa
- Department of Urology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Yoshiyuki Akiyama
- Department of Urology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Yuta Yamada
- Department of Urology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Yusuke Sato
- Department of Urology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Daisuke Yamada
- Department of Urology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Nobuyuki Tanaka
- Department of Urology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tatsuhiko Tsunoda
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo 113-0033, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Haruki Kume
- Department of Urology, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| |
Collapse
|
9
|
Sun Z, Zhang R, Zhang X, Sun Y, Liu P, Francoeur N, Han L, Lam WY, Yi Z, Sebra R, Walsh M, Yu J, Zhang W. LINE-1 promotes tumorigenicity and exacerbates tumor progression via stimulating metabolism reprogramming in non-small cell lung cancer. Mol Cancer 2022; 21:147. [PMID: 35842613 PMCID: PMC9288060 DOI: 10.1186/s12943-022-01618-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Long Interspersed Nuclear Element-1 (LINE-1, L1) is increasingly regarded as a genetic risk for lung cancer. Transcriptionally active LINE-1 forms a L1-gene chimeric transcript (LCTs), through somatic L1 retrotransposition (LRT) or L1 antisense promoter (L1-ASP) activation, to play an oncogenic role in cancer progression. METHODS Here, we developed Retrotransposon-gene fusion estimation program (ReFuse), to identify and quantify LCTs in RNA sequencing data from TCGA lung cancer cohort (n = 1146) and a single cell RNA sequencing dataset then further validated those LCTs in an independent cohort (n = 134). We next examined the functional roles of a cancer specific LCT (L1-FGGY) in cell proliferation and tumor progression in LUSC cell lines and mice. RESULTS The LCT events correspond with specific metabolic processes and mitochondrial functions and was associated with genomic instability, hypomethylation, tumor stage and tumor immune microenvironment (TIME). Functional analysis of a tumor specific and frequent LCT involving FGGY (L1-FGGY) reveal that the arachidonic acid (AA) metabolic pathway was activated by the loss of FGGY through the L1-FGGY chimeric transcript to promote tumor growth, which was effectively targeted by a combined use of an anti-HIV drug (NVR) and a metabolic inhibitor (ML355). Lastly, we identified a set of transcriptomic signatures to stratify the LUSC patients with a higher risk for poor outcomes who may benefit from treatments using NVR alone or combined with an anti-metabolism drug. CONCLUSIONS This study is the first to characterize the role of L1 in metabolic reprogramming of lung cancer and provide rationale for L1-specifc prognosis and potential for a therapeutic strategy for treating lung cancer. TRIAL REGISTRATION Study on the mechanisms of the mobile element L1-FGGY promoting the proliferation, invasion and immune escape of lung squamous cell carcinoma through the 12-LOX/Wnt pathway, Ek2020111. Registered 27 March 2020 - Retrospectively registered.
Collapse
Affiliation(s)
- Zeguo Sun
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yifei Sun
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Nancy Francoeur
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wan Yee Lam
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Zhengzi Yi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Martin Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Weijia Zhang
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
10
|
Affolter A, Kern J, Bieback K, Scherl C, Rotter N, Lammert A. Biomarkers and 3D models predicting response to immune checkpoint blockade in head and neck cancer (Review). Int J Oncol 2022; 61:88. [PMID: 35642667 PMCID: PMC9183766 DOI: 10.3892/ijo.2022.5378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022] Open
Abstract
Immunotherapy has evolved into a powerful tool in the fight against a number of types of cancer, including head and neck squamous cell carcinomas (HNSCC). Although checkpoint inhibition (CPI) has definitely enriched the treatment options for advanced stage HNSCC during the past decade, the percentage of patients responding to treatment is widely varying between 14-32% in second-line setting in recurrent or metastatic HNSCC with a sporadic durability. Clinical response and, consecutively, treatment success remain unpredictable in most of the cases. One potential factor is the expression of target molecules of the tumor allowing cancer cells to acquire therapy resistance mechanisms. Accordingly, analyzing and modeling the complexity of the tumor microenvironment (TME) is key to i) stratify subgroups of patients most likely to respond to CPI and ii) to define new combinatorial treatment regimens. Particularly in a heterogeneous disease such as HNSCC, thoroughly studying the interactions and crosstalking between tumor and TME cells is one of the biggest challenges. Sophisticated 3D models are therefore urgently needed to be able to validate such basic science hypotheses and to test novel immuno-oncologic treatment regimens in consideration of the individual biology of each tumor. The present review will first summarize recent findings on immunotherapy, predictive biomarkers, the role of the TME and signaling cascades eliciting during CPI. Second, it will highlight the significance of current promising approaches to establish HNSCC 3D models for new immunotherapies. The results are encouraging and indicate that data obtained from patient-specific tumors in a dish might be finally translated into personalized immuno-oncology.
Collapse
Affiliation(s)
- Annette Affolter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany
| | - Johann Kern
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden‑Württemberg‑Hessen, D‑68167 Mannheim, Germany
| | - Claudia Scherl
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany
| | - Nicole Rotter
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany
| | - Anne Lammert
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany
| |
Collapse
|
11
|
Soluble Sema4D Level Is Positively Correlated with Sema4D Expression in PBMCs and Peripheral Blast Number in Acute Leukemia. DISEASE MARKERS 2022; 2022:1384471. [PMID: 35401878 PMCID: PMC8988092 DOI: 10.1155/2022/1384471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022]
Abstract
Semaphorin 4D (Sema4D) is highly expressed in various cancers and leukemia. It is involved in the development of acute leukemia. A high level of soluble Sema4D is also present in the plasma of acute leukemia patients. However, it remains unknown whether Sema4D is associated with the clinical characteristics of acute leukemia. In this study, Sema4D expression was examined in peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMMCs) of patients with acute leukemia, and it was highly expressed in the PBMCs of B-acute lymphoblastic leukemia (ALL), T-ALL, and acute myeloid leukemia (AML) patients and in the BMMCs of B-ALL and AML patients but not in the BMMCs of T-ALL patients. Sema4D expression was higher in the PBMCs of T-ALL patients than in the PBMCs of B-ALL or AML patients. In addition, Sema4D expression in BMMCs was reduced in B-ALL patients during the chemotherapy process. It was lower in remission patients than in newly diagnosed and patients without remission. In acute leukemia, soluble Sema4D level in serum is positively correlated with Sema4D expression in PBMCs, leukocyte number, and peripheral blast number. Those results suggest that the levels of Sema4D and its soluble form are associated with acute leukemia development and may be regarded as a potential biomarker in pediatric acute leukemia.
Collapse
|
12
|
邓 海, 王 李, 杨 伊, 吴 建, 周 承. [Dual Immunotherapy in Advanced Non-small Cell Lung Cancer:
the Progress and Clinical Application]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:102-110. [PMID: 35224963 PMCID: PMC8913291 DOI: 10.3779/j.issn.1009-3419.2021.102.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 01/14/2023]
Abstract
Programmed cell death protein-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) inhibitors and PD-1 inhibitors plus chemotherapy combination regimens have been widely used in the first-line treatment of advanced non-small cell lung cancer(NSCLC), but patients with low PD-L1 expression have limited objective response and survival benefits. Existing treatment regimens are still difficult to fully meet the clinical needs of patients in the real world. Therefore, researchers are still exploring novel superactive treatment options to further improve the efficacy and survival prognosis of different sub-groups in NSCLC. Dual immunotherapy [such as the combination of PD-1 and cytotoxic T lymphocyte associated antigen-4 (CTLA-4) inhibitors] has shown considerable long-term survival benefits in a variety of tumors and has also shown broad clinical prospects in NSCLC. In addition to exploring different emerging combination options, how to accurately identify the optimal-benefit groups through predictive biomarkers and how to effectively manage the safety of combination immunotherapy through multidisciplinary collaboration are also the focus of dual immunotherapy. This article reviews the mechanism of action, research progress, predictive biomarkers and future exploration directions of dual immunotherapy.
.
Collapse
Affiliation(s)
- 海怡 邓
- />510120 广州,呼吸疾病国家重点实验室,国家呼吸系统疾病临床研究中心,广州医科大学附属第一医院,广州呼吸健康研究院State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease; Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - 李强 王
- />510120 广州,呼吸疾病国家重点实验室,国家呼吸系统疾病临床研究中心,广州医科大学附属第一医院,广州呼吸健康研究院State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease; Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - 伊霖 杨
- />510120 广州,呼吸疾病国家重点实验室,国家呼吸系统疾病临床研究中心,广州医科大学附属第一医院,广州呼吸健康研究院State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease; Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - 建辉 吴
- />510120 广州,呼吸疾病国家重点实验室,国家呼吸系统疾病临床研究中心,广州医科大学附属第一医院,广州呼吸健康研究院State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease; Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - 承志 周
- />510120 广州,呼吸疾病国家重点实验室,国家呼吸系统疾病临床研究中心,广州医科大学附属第一医院,广州呼吸健康研究院State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease; Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|