1
|
Saxena M, Marron TU, Kodysh J, Finnigan JP, Onkar S, Kaminska A, Tuballes K, Guo R, Sabado RL, Meseck M, O'Donnell TJ, Sebra RP, Parekh S, Galsky MD, Blasquez A, Gimenez G, Bicak M, Cimen Bozkus C, Delbeau-Zagelbaum D, Rodriguez D, Acuna-Villaorduna A, Misiukiewicz KJ, Posner MR, Miles BA, Irie HY, Tiersten A, Doroshow DB, Wolf A, Mandeli J, Brody R, Salazar AM, Gnjatic S, Hammerbacher J, Schadt E, Friedlander P, Rubinsteyn A, Bhardwaj N. PGV001, a Multi-Peptide Personalized Neoantigen Vaccine Platform: Phase I Study in Patients with Solid and Hematologic Malignancies in the Adjuvant Setting. Cancer Discov 2025; 15:930-947. [PMID: 40094414 DOI: 10.1158/2159-8290.cd-24-0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025]
Abstract
SIGNIFICANCE The PGV001 platform is feasible, safe, and immunogenic. The OpenVax pipeline predicted immunogenic neoantigens in tumors with wide-ranging mutational burdens. Data from this study prompted three additional PGV001 trials, one in newly diagnosed glioblastoma, one in urothelial cancer in combination with an ICI, and another in prostate cancer.
Collapse
Affiliation(s)
- Mansi Saxena
- Vaccine and Cell Therapy Laboratory, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Thomas U Marron
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Julia Kodysh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John P Finnigan
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sayali Onkar
- Vaccine and Cell Therapy Laboratory, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Anna Kaminska
- Vaccine and Cell Therapy Laboratory, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kevin Tuballes
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ruiwei Guo
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Lubong Sabado
- Vaccine and Cell Therapy Laboratory, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marcia Meseck
- Vaccine and Cell Therapy Laboratory, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Timothy J O'Donnell
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samir Parekh
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Matthew D Galsky
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ana Blasquez
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gustavo Gimenez
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mesude Bicak
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cansu Cimen Bozkus
- Vaccine and Cell Therapy Laboratory, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniela Delbeau-Zagelbaum
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Denise Rodriguez
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ana Acuna-Villaorduna
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Krzysztof J Misiukiewicz
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marshall R Posner
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Brett A Miles
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department Otolaryngology Head and Neck Surgery, Northwell Cancer Institute, Northwell Health, New York, New York
| | - Hanna Y Irie
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Amy Tiersten
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Deborah B Doroshow
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrea Wolf
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Mandeli
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Brody
- Department of Pathology, Icahn School of Medicine, New York, New York
| | | | - Sacha Gnjatic
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jeff Hammerbacher
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric Schadt
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Philip Friedlander
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alexander Rubinsteyn
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Nina Bhardwaj
- Vaccine and Cell Therapy Laboratory, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Division of Hematology Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Parker Institute of Cancer Immunotherapy, San Francisco, California
| |
Collapse
|
2
|
Guerri F, Junet V, Farrés J, Daura X. MMPred: a tool to predict peptide mimicry events in MHC class II recognition. Front Genet 2024; 15:1500684. [PMID: 39722794 PMCID: PMC11669352 DOI: 10.3389/fgene.2024.1500684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
We present MMPred, a software tool that integrates epitope prediction and sequence alignment algorithms to streamline the computational analysis of molecular mimicry events in autoimmune diseases. Starting with two protein or peptide sets (e.g., from human and SARS-CoV-2), MMPred facilitates the generation, investigation, and testing of mimicry hypotheses by providing epitope predictions specifically for MHC class II alleles, which are frequently implicated in autoimmunity. However, the tool is easily extendable to MHC class I predictions by incorporating pre-trained models from CNN-PepPred and NetMHCpan. To evaluate MMPred's ability to produce biologically meaningful insights, we conducted a comprehensive assessment involving i) predicting associations between known HLA class II human autoepitopes and microbial-peptide mimicry, ii) interpreting these predictions within a systems biology framework to identify potential functional links between the predicted autoantigens and pathophysiological pathways related to autoimmune diseases, and iii) analyzing illustrative cases in the context of SARS-CoV-2 infection and autoimmunity. MMPred code and user guide are made freely available at https://github.com/ComputBiol-IBB/MMPRED.
Collapse
Affiliation(s)
- Filippo Guerri
- Anaxomics Biotech, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Valentin Junet
- Anaxomics Biotech, Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Xavier Daura
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, Spain
| |
Collapse
|
3
|
Molina-Alejandre M, Perea F, Calvo V, Martinez-Toledo C, Nadal E, Sierra-Rodero B, Casarrubios M, Casal-Rubio J, Martinez-Martí A, Insa A, Massuti B, Viteri S, Barneto Aranda I, Rodriguez-Abreu D, de Castro J, Martínez JM, Cobo M, Wistuba II, Parra ER, Martín-López J, Megías D, Muñoz-Viana R, Garrido F, Aptsiauri N, Ruiz-Cabello F, Provencio M, Cruz-Bermúdez A. Perioperative chemoimmunotherapy induces strong immune responses and long-term survival in patients with HLA class I-deficient non-small cell lung cancer. J Immunother Cancer 2024; 12:e009762. [PMID: 39428126 PMCID: PMC11492944 DOI: 10.1136/jitc-2024-009762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Loss of human leukocyte antigen (HLA) class I expression and loss of heterozygosity (LOH) are common events implicated in the primary resistance of non-small cell lung cancer (NSCLC) to immunotherapy. However, there is no data on perioperative chemoimmunotherapy (ChIO) efficacy or response mechanisms in the context of HLA class I defects. METHODS Baseline HLA class I tumor status (HLA-deficient (HLA-DEF) or HLA-proficient (HLA-PRO)) was determined by DNA LOH combined with immunohistochemistry for protein levels in tissue of 24 patients with NSCLC treated with perioperative nivolumab plus chemotherapy from NADIM trial (NCT03081689). We integrated HLA tumor status with molecular data (programmed death-ligand 1 (PD-L1), TMB, TCR repertoire, TILs populations, bulk RNA-seq, and spatial transcriptomics (ST)) and clinical outcomes (pathological response and survival data) to study the activity of perioperative ChIO considering HLA class I defects. RESULTS HLA-DEF tumors comprised 41.7% of analyzed tumors and showed a desert-like microenvironment at baseline, with lower PD-L1 levels and reduced immune infiltrate. However, perioperative ChIO induced similar complete pathological response (CPR) rates in both HLA-DEF and PRO tumors (50% and 60% respectively, p=0.670), as well as 3-year survival rates: Progression-free survival (PFS) and overall survival (OS) of 70% (95% CI 32.9% to 89.2%) for HLA-DEF, and PFS 71.4% (95% CI 40.6% to 88.2%) and OS 92.9% (95% CI 59.1% to 99.0%) for HLA-PRO (log-rank PFS p=0.909, OS p=0.137). Proof-of-concept ST analysis of a CPR HLA-DEF tumor after ChIO showed a strong immune response with tertiary lymphoid structures (TLS), CD4+T cells with HLA class II colocalization, and activated CD8+T cells. CONCLUSIONS Our findings highlight the activity of perioperative ChIO, and the potential role of TLS and T-cell immune response, in NSCLC HLA-DEF tumors.
Collapse
Affiliation(s)
- Marta Molina-Alejandre
- Departament of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Comunidad de Madrid, Spain
| | - Francisco Perea
- Departamento de Bioquímica, Biología Molecular e Inmunología III. Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), Universidad de Granada Facultad de Medicina, Granada, Andalucía, Spain
| | - Virginia Calvo
- Departament of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Comunidad de Madrid, Spain
| | - Cristina Martinez-Toledo
- Departament of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Comunidad de Madrid, Spain
| | - Ernest Nadal
- Catalan Institute of Oncology. Oncobell Program. IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Belén Sierra-Rodero
- Departament of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Comunidad de Madrid, Spain
| | - Marta Casarrubios
- Departament of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Comunidad de Madrid, Spain
| | | | - Alex Martinez-Martí
- Departament of Medical Oncology, Hospital Universitari Vall d'Hebron, Barcelona, Catalunya, Spain
| | - Amelia Insa
- Fundación INCLIVA, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Bartomeu Massuti
- Hospital General Universitario Dr. Balmis de Alicante, Alicante, Spain
| | - Santiago Viteri
- Hospital Universitario Quiron Dexeus, Grupo Quironsalud, Barcelona, Catalunya, Spain
| | | | | | | | | | - Manuel Cobo
- Medical Oncology Intercenter Unit. IBIMA, Virgen de la Victoria University Hospital Pharmacy Clinic Management Unit, Malaga, Andalucía, Spain
| | - Ignacio I Wistuba
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Edwin R Parra
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Javier Martín-López
- Pathological Anatomy, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Spain
| | - Diego Megías
- Unidad de Microscopía Óptica Avanzada, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Rafael Muñoz-Viana
- Unidad de Bioinformática, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Majadahonda, Spain
| | - Federico Garrido
- Departamento de Bioquímica, Biología Molecular e Inmunología III. Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), Universidad de Granada Facultad de Medicina, Granada, Andalucía, Spain
| | - Natalia Aptsiauri
- Departamento de Bioquímica, Biología Molecular e Inmunología III. Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), Universidad de Granada Facultad de Medicina, Granada, Andalucía, Spain
| | - Francisco Ruiz-Cabello
- Departamento de Bioquímica, Biología Molecular e Inmunología III. Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), Universidad de Granada Facultad de Medicina, Granada, Andalucía, Spain
| | - Mariano Provencio
- Departament of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Comunidad de Madrid, Spain
| | - Alberto Cruz-Bermúdez
- Departament of Medical Oncology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Comunidad de Madrid, Spain
| |
Collapse
|
4
|
Vaulin A, Karpulevich E, Kasianov A, Morozova I. Europeans and Americans of European origin show differences between their biological pathways related to the major histocompatibility complex. Sci Rep 2024; 14:21816. [PMID: 39294244 PMCID: PMC11410964 DOI: 10.1038/s41598-024-71803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
In this study, we analysed biological pathway diversity among Europeans and Northern Americans of European origin, the groups of people that share a common genetic ancestry but live in different geographic regions. We used a novel complex approach for analysing genomic data: we studied the total effects of multiple weak selection signals, accumulated from independent SNPs within a pathway. We found significant differences between immunity-related biological pathways from the two groups. All identified pathways included genes belonging to the major histocompatibility complex (MHC) system, which plays an important role in adaptive immune responses. We suggest that the ways of evolution were different for the MHC-I and MHC-II gene groups at least in Europeans and Americans of European origin. We hypothesise that the observed variability between the two populations was triggered by selection pressures due to the different pathogen landscapes and pathogen loads on the two continents. Our findings can be important for epidemic prevention and control, as well as for analysing processes related to allergies, organ transplantation, and autoimmune diseases.
Collapse
Affiliation(s)
- Andrey Vaulin
- Nanyang Technological University, Singapore, Singapore
| | - Evgeny Karpulevich
- Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISP RAS), Moscow, Russia
| | - Artem Kasianov
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal.
| | - Irina Morozova
- Institute for Globally Distributed Open Research and Education (IGDORE), Moscow, Russia.
| |
Collapse
|
5
|
Meng X, Chi H, Zhang Z, Li Q, Sheng X, Tang X, Xing J, Zhan W. Transcriptome Analysis of Peritoneal Cells Reveals the Early Immune Response of Flounder ( Paralichthys olivaceus) to Inactivated Vibrio anguillarum Immunization. Vaccines (Basel) 2023; 11:1603. [PMID: 37897005 PMCID: PMC10611026 DOI: 10.3390/vaccines11101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Vibrio anguillarum (V. anguillarum) is a bacterium that seriously harms flounder and other aquaculture species. Vaccination is an effective means of preventing vibriosis and is mainly administered by intraperitoneal injection. Effective antigen processing at the initial stage of immunization is essential to elicit adaptive immune responses and improve vaccine efficacy. To understand the early immune response of flounder caused by inactivated V. anguillarum, we detected the transcriptome profiles of the cells in the peritoneal cavity (PoPerCs) after inactivated V. anguillarum immunization. More than 10 billion high-quality reads were obtained, of which about 89.33% were successfully mapped to the reference genome of flounder. A total of 1985, 3072, 4001, and 5476 differentially expressed genes were captured at 6, 12, 24, and 48 h post immunization, respectively. The hub module correlated with the immunization time was identified by WGCNA. GO and KEGG analysis showed that hub module genes were abundantly expressed in various immune-related aspects, including the response to stimuli, the immune system process, signal transducer activity, autophagy, the NOD-like receptor signaling pathway, the toll-like receptor signaling pathway, the T cell receptor signaling pathway, and Th17 cell differentiation. Additionally, genes related to Th cell differentiation are presented as heatmaps. These genes constitute a complex immune regulatory network, mainly involved in pathogen recognition, antigen processing and presentation, and Th cell differentiation. The results of this study provide the first transcriptome profile of PoPerCs associated with inactivated V. anguillarum immunity and lay a solid foundation for further studies on effective V. anguillarum vaccines.
Collapse
Affiliation(s)
- Xianghu Meng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.M.); (Q.L.); (X.S.); (X.T.); (J.X.); (W.Z.)
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.M.); (Q.L.); (X.S.); (X.T.); (J.X.); (W.Z.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Zuobing Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China;
| | - Qian Li
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.M.); (Q.L.); (X.S.); (X.T.); (J.X.); (W.Z.)
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.M.); (Q.L.); (X.S.); (X.T.); (J.X.); (W.Z.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.M.); (Q.L.); (X.S.); (X.T.); (J.X.); (W.Z.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.M.); (Q.L.); (X.S.); (X.T.); (J.X.); (W.Z.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; (X.M.); (Q.L.); (X.S.); (X.T.); (J.X.); (W.Z.)
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
6
|
Gandek TB, van der Koog L, Nagelkerke A. A Comparison of Cellular Uptake Mechanisms, Delivery Efficacy, and Intracellular Fate between Liposomes and Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2300319. [PMID: 37384827 PMCID: PMC11469107 DOI: 10.1002/adhm.202300319] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
A key aspect for successful drug delivery via lipid-based nanoparticles is their internalization in target cells. Two prominent examples of such drug delivery systems are artificial phospholipid-based carriers, such as liposomes, and their biological counterparts, the extracellular vesicles (EVs). Despite a wealth of literature, it remains unclear which mechanisms precisely orchestrate nanoparticle-mediated cargo delivery to recipient cells and the subsequent intracellular fate of therapeutic cargo. In this review, internalization mechanisms involved in the uptake of liposomes and EVs by recipient cells are evaluated, also exploring their intracellular fate after intracellular trafficking. Opportunities are highlighted to tweak these internalization mechanisms and intracellular fates to enhance the therapeutic efficacy of these drug delivery systems. Overall, literature to date shows that both liposomes and EVs are predominantly internalized through classical endocytosis mechanisms, sharing a common fate: accumulation inside lysosomes. Studies tackling the differences between liposomes and EVs, with respect to cellular uptake, intracellular delivery and therapy efficacy, remain scarce, despite its importance for the selection of an appropriate drug delivery system. In addition, further exploration of functionalization strategies of both liposomes and EVs represents an important avenue to pursue in order to control internalization and fate, thereby improving therapeutic efficacy.
Collapse
Affiliation(s)
- Timea B. Gandek
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| | - Luke van der Koog
- Molecular PharmacologyGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB10Groningen9700 ADThe Netherlands
| | - Anika Nagelkerke
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyUniversity of GroningenP.O. Box 196, XB20Groningen9700 ADThe Netherlands
| |
Collapse
|
7
|
Trier NH, Houen G. Antibody Cross-Reactivity in Auto-Immune Diseases. Int J Mol Sci 2023; 24:13609. [PMID: 37686415 PMCID: PMC10487534 DOI: 10.3390/ijms241713609] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Autoimmunity is defined by the presence of antibodies and/or T cells directed against self-components. Although of unknown etiology, autoimmunity commonly is associated with environmental factors such as infections, which have been reported to increase the risk of developing autoimmune diseases. Occasionally, similarities between infectious non-self and self-tissue antigens may contribute to immunological cross-reactivity in autoimmune diseases. These reactions may be interpreted as molecular mimicry, which describes cross-reactivity between foreign pathogens and self-antigens that have been reported to cause tissue damage and to contribute to the development of autoimmunity. By focusing on the nature of antibodies, cross-reactivity in general, and antibody-antigen interactions, this review aims to characterize the nature of potential cross-reactive immune reactions between infectious non-self and self-tissue antigens which may be associated with autoimmunity but may not actually be the cause of disease onset.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
8
|
Hartout P, Počuča B, Méndez-García C, Schleberger C. Investigating the human and nonobese diabetic mouse MHC class II immunopeptidome using protein language modeling. Bioinformatics 2023; 39:btad469. [PMID: 37527005 PMCID: PMC10421966 DOI: 10.1093/bioinformatics/btad469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/17/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023] Open
Abstract
MOTIVATION Identifying peptides associated with the major histocompability complex class II (MHCII) is a central task in the evaluation of the immunoregulatory function of therapeutics and drug prototypes. MHCII-peptide presentation prediction has multiple biopharmaceutical applications, including the safety assessment of biologics and engineered derivatives in silico, or the fast progression of antigen-specific immunomodulatory drug discovery programs in immune disease and cancer. This has resulted in the collection of large-scale datasets on adaptive immune receptor antigenic responses and MHC-associated peptide proteomics. In parallel, recent deep learning algorithmic advances in protein language modeling have shown potential in leveraging large collections of sequence data and improve MHC presentation prediction. RESULTS Here, we train a compact transformer model (AEGIS) on human and mouse MHCII immunopeptidome data, including a preclinical murine model, and evaluate its performance on the peptide presentation prediction task. We show that the transformer performs on par with existing deep learning algorithms and that combining datasets from multiple organisms increases model performance. We trained variants of the model with and without MHCII information. In both alternatives, the inclusion of peptides presented by the I-Ag7 MHC class II molecule expressed by nonobese diabetic mice enabled for the first time the accurate in silico prediction of presented peptides in a preclinical type 1 diabetes model organism, which has promising therapeutic applications. AVAILABILITY AND IMPLEMENTATION The source code is available at https://github.com/Novartis/AEGIS.
Collapse
Affiliation(s)
- Philip Hartout
- Discovery Sciences, Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Bojana Počuča
- NIBR Research Informatics, Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Celia Méndez-García
- Discovery Sciences, Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| | - Christian Schleberger
- Discovery Sciences, Novartis Institutes for Biomedical Research, Basel 4056, Switzerland
| |
Collapse
|
9
|
Ravindranath MH, Ravindranath NM, Selvan SR, Hilali FE, Amato-Menker CJ, Filippone EJ. Cell Surface B2m-Free Human Leukocyte Antigen (HLA) Monomers and Dimers: Are They Neo-HLA Class and Proto-HLA? Biomolecules 2023; 13:1178. [PMID: 37627243 PMCID: PMC10452486 DOI: 10.3390/biom13081178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cell surface HLA-I molecules (Face-1) consist of a polypeptide heavy chain (HC) with two groove domains (G domain) and one constant domain (C-domain) as well as a light chain, B2-microglobulin (B2m). However, HCs can also independently emerge unfolded on the cell surface without peptides as B2m-free HC monomers (Face-2), B2m-free HC homodimers (Face 3), and B2m-free HC heterodimers (Face-4). The transport of these HLA variants from ER to the cell surface was confirmed by antiviral antibiotics that arrest the release of newly synthesized proteins from the ER. Face-2 occurs at low levels on the normal cell surface of the lung, bronchi, epidermis, esophagus, breast, stomach, ilium, colorectum, gall bladder, urinary bladder, seminal vesicles ovarian epithelia, endometrium, thymus, spleen, and lymphocytes. They are upregulated on immune cells upon activation by proinflammatory cytokines, anti-CD3 antibodies, antibiotics (e.g., ionomycin), phytohemagglutinin, retinoic acid, and phorbol myristate acetate. Their density on the cell surface remains high as long as the cells remain in an activated state. After activation-induced upregulation, the Face-2 molecules undergo homo- and hetero-dimerization (Face-3 and Face-4). Alterations in the redox environment promote dimerization. Heterodimerization can occur among and between the alleles of different haplotypes. The glycosylation of these variants differ from that of Face-1, and they may occur with bound exogenous peptides. Spontaneous arthritis occurs in HLA-B27+ mice lacking B2m (HLA-B27+ B2m-/-) but not in HLA-B27+ B2m+/- mice. The mice with HLA-B27 in Face-2 spontaneous configuration develop symptoms such as changes in nails and joints, hair loss, and swelling in paws, leading to ankyloses. Anti-HC-specific mAbs delay disease development. Some HLA-I polyreactive mAbs (MEM series) used for immunostaining confirm the existence of B2m-free variants in several cancer cells. The upregulation of Face-2 in human cancers occurs concomitantly with the downregulation of intact HLAs (Face-1). The HLA monomeric and dimeric variants interact with inhibitory and activating ligands (e.g., KIR), growth factors, cytokines, and neurotransmitters. Similarities in the amino acid sequences of the HLA-I variants and HLA-II β-chain suggest that Face-2 could be the progenitor of both HLA classes. These findings may support the recognition of these variants as a neo-HLA class and proto-HLA.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Senthamil R. Selvan
- Division of Immunology and Hematology Devices, OHT 7: Office of In Vitro Diagnostics, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA;
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibnou Zohr University, Agadir 80000, Morocco;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| |
Collapse
|
10
|
Sun Y, Ma L, Li S, Wang Y, Xiao R, Yang J, Dijkstra JM, Xia C. Crystal Structure of a Classical MHC Class I Molecule in Dogs; Comparison of DLA-88*0 and DLA-88*5 Category Molecules. Cells 2023; 12:cells12071097. [PMID: 37048169 PMCID: PMC10093629 DOI: 10.3390/cells12071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
DLA-88 is a classical major histocompatibility complex (MHC) class I gene in dogs, and allelic DLA-88 molecules have been divided into two categories named "DLA-88*0" and "DLA-88*5." The defining difference between the two categories concerns an LQW motif in the α2 domain helical region of the DLA-88*5 molecules that includes the insertion of an extra amino acid compared to MHC class I consensus length. We here show that this motif has been exchanged by recombination between different DLA-88 evolutionary lineages. Previously, with pDLA-88*508:01, the structure of a molecule of the DLA-88*5 category was elucidated. The present study is the first to elucidate a structure, using X-ray crystallography, of the DLA-88*0 category, namely DLA-88*001:04 complexed with β2m and a nonamer peptide derived from canine distemper virus (CDV). The LQW motif that distinguishes DLA-88*5 from DLA-88*0 causes a shallower peptide binding groove (PBG) and a leucine exposed at the top of the α2 domain helix expected to affect T cell selection. Peptide ligand amino acid substitution and pMHC-I complex formation and stability analyses revealed that P2 and P3 are the major anchor residue positions for binding to DLA-88*001:04. We speculate that the distribution pattern of the LQW motif among canine classical MHC class I alleles represents a strategy to enhance allogeneic rejection by T cells of transmissible cancers such as canine transmissible venereal tumor (CTVT).
Collapse
Affiliation(s)
- Yujiao Sun
- Yantai Institute of China Agricultural University, No. 2006, Binhai Mid-Rd, High-Tech Zone, Yantai City 264003, China
| | - Lizhen Ma
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Shen Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yawen Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruiqi Xiao
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junqi Yang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Johannes M Dijkstra
- Center for Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Chun Xia
- Yantai Institute of China Agricultural University, No. 2006, Binhai Mid-Rd, High-Tech Zone, Yantai City 264003, China
| |
Collapse
|
11
|
Wei Q, Deng Y, Yang Q, Zhan A, Wang L. The markers to delineate different phenotypes of macrophages related to metabolic disorders. Front Immunol 2023; 14:1084636. [PMID: 36814909 PMCID: PMC9940311 DOI: 10.3389/fimmu.2023.1084636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Macrophages have a wide variety of roles in physiological and pathological conditions, making them promising diagnostic and therapeutic targets in diseases, especially metabolic disorders, which have attracted considerable attention in recent years. Owing to their heterogeneity and polarization, the phenotypes and functions of macrophages related to metabolic disorders are diverse and complicated. In the past three decades, the rapid progress of macrophage research has benefited from the emergence of specific molecular markers to delineate different phenotypes of macrophages and elucidate their role in metabolic disorders. In this review, we analyze the functions and applications of commonly used and novel markers of macrophages related to metabolic disorders, facilitating the better use of these macrophage markers in metabolic disorder research.
Collapse
Affiliation(s)
- Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Angyu Zhan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China.,Guangdong Traditional Chinese Medicine Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, China.,Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
12
|
Feng L, Gao YY, Sun M, Li ZB, Zhang Q, Yang J, Qiao C, Jin H, Feng HS, Xian YH, Qi J, Gao GF, Liu WJ, Gao FS. The Parallel Presentation of Two Functional CTL Epitopes Derived from the O and Asia 1 Serotypes of Foot-and-Mouth Disease Virus and Swine SLA-2*HB01: Implications for Universal Vaccine Development. Cells 2022; 11:cells11244017. [PMID: 36552780 PMCID: PMC9777387 DOI: 10.3390/cells11244017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) poses a significant threat to the livestock industry. Through their recognition of the conserved epitopes presented by the swine leukocyte antigen (SLA), T cells play a pivotal role in the antiviral immunity of pigs. Herein, based on the peptide binding motif of SLA-2*HB01, from an original SLA-2 allele, a series of functional T-cell epitopes derived from the dominant antigen VP1 of FMDV with high binding capacity to SLA-2 were identified. Two parallel peptides, Hu64 and As64, from the O and Asia I serotypes, respectively, were both crystallized with SLA-2*HB01. Compared to SLA-1 and SLA-3, the SLA-2 structures showed the flexibility of residues in the P4, P6, and P8 positions and in their potential interface with TCR. Notably, the peptides Hu64 and As64 adopted quite similar overall conformation when bound to SLA-2*HB01. Hu64 has two different conformations, a more stable 'chair' conformation and an unstable 'boat' conformation observed in the two molecules of one asymmetric unit, whereas only a single 'chair' conformation was observed for As64. Both Hu64 and As64 could induce similar dominant T-cell activities. Our interdisciplinary study establishes a basis for the in-depth interpretation of the peptide presentation of SLA-I, which can be used toward the development of universal vaccines.
Collapse
Affiliation(s)
- Lei Feng
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yong-Yu Gao
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Mingwei Sun
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Zi-Bin Li
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Qiang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jie Yang
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Cui Qiao
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Hang Jin
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
| | - Hong-Sheng Feng
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
| | - Yu-Han Xian
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Correspondence: (G.F.G.); (W.J.L.); (F.-S.G.)
| | - William J. Liu
- NHC Key Laboratory of Biosafety, Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Correspondence: (G.F.G.); (W.J.L.); (F.-S.G.)
| | - Feng-Shan Gao
- Department of Bioengineering, College of Life and Health, Dalian University, Dalian 116622, China
- Correspondence: (G.F.G.); (W.J.L.); (F.-S.G.)
| |
Collapse
|
13
|
Wong ATC, Lam DK, Poon ESK, Chan DTC, Sin SYW. Intra-specific copy number variation of MHC class II genes in the Siamese fighting fish. Immunogenetics 2022; 74:327-346. [PMID: 35229174 DOI: 10.1007/s00251-022-01255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Duplicates of genes for major histocompatibility complex (MHC) molecules can be subjected to selection independently and vary markedly in their evolutionary rates, sequence polymorphism, and functional roles. Therefore, without a thorough understanding of their copy number variation (CNV) in the genome, the MHC-dependent fitness consequences within a species could be misinterpreted. Studying the intra-specific CNV of this highly polymorphic gene, however, has long been hindered by the difficulties in assigning alleles to loci and the lack of high-quality genomic data. Here, using the high-quality genome of the Siamese fighting fish (Betta splendens), a model for mate choice studies, and the whole-genome sequencing (WGS) data of 17 Betta species, we achieved locus-specific amplification of their three classical MHC class II genes - DAB1, DAB2, and DAB3. By performing quantitative PCR and depth-of-coverage analysis using the WGS data, we revealed intra-specific CNV at the DAB3 locus. We identified individuals that had two allelic copies (i.e., heterozygous or homozygous) or one allele (i.e., hemizygous) and individuals without this gene. The CNV was due to the deletion of a 20-kb-long genomic region harboring both the DAA3 and DAB3 genes. We further showed that the three DAB genes were under different modes of selection, which also applies to their corresponding DAA genes that share similar pattern of polymorphism. Our study demonstrates a combined approach to study CNV within a species, which is crucial for the understanding of multigene family evolution and the fitness consequences of CNV.
Collapse
Affiliation(s)
- Anson Tsz Chun Wong
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Derek Kong Lam
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Emily Shui Kei Poon
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - David Tsz Chung Chan
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China.
| |
Collapse
|
14
|
Marzella DF, Parizi FM, van Tilborg D, Renaud N, Sybrandi D, Buzatu R, Rademaker DT, ‘t Hoen PAC, Xue LC. PANDORA: A Fast, Anchor-Restrained Modelling Protocol for Peptide: MHC Complexes. Front Immunol 2022; 13:878762. [PMID: 35619705 PMCID: PMC9127323 DOI: 10.3389/fimmu.2022.878762] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/07/2022] [Indexed: 11/21/2022] Open
Abstract
Deeper understanding of T-cell-mediated adaptive immune responses is important for the design of cancer immunotherapies and antiviral vaccines against pandemic outbreaks. T-cells are activated when they recognize foreign peptides that are presented on the cell surface by Major Histocompatibility Complexes (MHC), forming peptide:MHC (pMHC) complexes. 3D structures of pMHC complexes provide fundamental insight into T-cell recognition mechanism and aids immunotherapy design. High MHC and peptide diversities necessitate efficient computational modelling to enable whole proteome structural analysis. We developed PANDORA, a generic modelling pipeline for pMHC class I and II (pMHC-I and pMHC-II), and present its performance on pMHC-I here. Given a query, PANDORA searches for structural templates in its extensive database and then applies anchor restraints to the modelling process. This restrained energy minimization ensures one of the fastest pMHC modelling pipelines so far. On a set of 835 pMHC-I complexes over 78 MHC types, PANDORA generated models with a median RMSD of 0.70 Å and achieved a 93% success rate in top 10 models. PANDORA performs competitively with three pMHC-I modelling state-of-the-art approaches and outperforms AlphaFold2 in terms of accuracy while being superior to it in speed. PANDORA is a modularized and user-configurable python package with easy installation. We envision PANDORA to fuel deep learning algorithms with large-scale high-quality 3D models to tackle long-standing immunology challenges.
Collapse
Affiliation(s)
- Dario F. Marzella
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, Netherlands
| | - Farzaneh M. Parizi
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, Netherlands
| | - Derek van Tilborg
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, Netherlands
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Nicolas Renaud
- Natural Sciences and Engineering section, Netherlands eScience Center, Amsterdam, Netherlands
| | - Daan Sybrandi
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht, Netherlands
| | - Rafaella Buzatu
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, Netherlands
| | - Daniel T. Rademaker
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, Netherlands
| | - Peter A. C. ‘t Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, Netherlands
| | - Li C. Xue
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
15
|
Antigen Presentation and Autophagy in Teleost Adaptive Immunity. Int J Mol Sci 2022; 23:ijms23094899. [PMID: 35563287 PMCID: PMC9103719 DOI: 10.3390/ijms23094899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Infectious diseases are a burden for aquaculture. Antigen processing and presentation (APP) to the immune effector cells that fight pathogens is key in the adaptive immune response. At the core of the adaptive immunity that appeared in lower vertebrates during evolution are the variable genes encoding the major histocompatibility complex (MHC). MHC class I molecules mainly present peptides processed in the cytosol by the proteasome and transported to the cell surface of all cells through secretory compartments. Professional antigen-presenting cells (pAPC) also express MHC class II molecules, which normally present peptides processed from exogenous antigens through lysosomal pathways. Autophagy is an intracellular self-degradation process that is conserved in all eukaryotes and is induced by starvation to contribute to cellular homeostasis. Self-digestion during autophagy mainly occurs by the fusion of autophagosomes, which engulf portions of cytosol and fuse with lysosomes (macroautophagy) or assisted by chaperones (chaperone-mediated autophagy, CMA) that deliver proteins to lysosomes. Thus, during self-degradation, antigens can be processed to be presented by the MHC to immune effector cells, thus, linking autophagy to APP. This review is focused on the essential components of the APP that are conserved in teleost fish and the increasing evidence related to the modulation of APP and autophagy during pathogen infection.
Collapse
|
16
|
|
17
|
Liu QR, Aseer KR, Yao Q, Zhong X, Ghosh P, O’Connell JF, Egan JM. Anti-Inflammatory and Pro-Autophagy Effects of the Cannabinoid Receptor CB2R: Possibility of Modulation in Type 1 Diabetes. Front Pharmacol 2022; 12:809965. [PMID: 35115945 PMCID: PMC8804091 DOI: 10.3389/fphar.2021.809965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease resulting from loss of insulin-secreting β-cells in islets of Langerhans. The loss of β-cells is initiated when self-tolerance to β-cell-derived contents breaks down, which leads to T cell-mediated β-cell damage and, ultimately, β-cell apoptosis. Many investigations have demonstrated the positive effects of antagonizing cannabinoid receptor 1 (CB1R) in metabolic diseases such as fatty liver disease, obesity, and diabetes mellitus, but the role of cannabinoid receptor 2 (CB2R) in such diseases is relatively unknown. Activation of CB2R is known for its immunosuppressive roles in multiple sclerosis, rheumatoid arthritis, Crohn’s, celiac, and lupus diseases, and since autoimmune diseases can share common environmental and genetic factors, we propose CB2R specific agonists may also serve as disease modifiers in diabetes mellitus. The CNR2 gene, which encodes CB2R protein, is the result of a gene duplication of CNR1, which encodes CB1R protein. This ortholog evolved rapidly after transitioning from invertebrates to vertebrate hundreds of million years ago. Human specific CNR2 isoforms are induced by inflammation in pancreatic islets, and a CNR2 nonsynonymous SNP (Q63R) is associated with autoimmune diseases. We collected evidence from the literature and from our own studies demonstrating that CB2R is involved in regulating the inflammasome and especially release of the cytokine interleukin 1B (IL-1β). Furthermore, CB2R activation controls intracellular autophagy and may regulate secretion of extracellular vesicles from adipocytes that participate in recycling of lipid droplets, dysregulation of which induces chronic inflammation and obesity. CB2R activation may play a similar role in islets of Langerhans. Here, we will discuss future strategies to unravel what roles, if any, CB2R modifiers potentially play in T1DM.
Collapse
Affiliation(s)
- Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
- *Correspondence: Qing-Rong Liu, ; Josephine M. Egan,
| | - Kanikkai Raja Aseer
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Qin Yao
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Xiaoming Zhong
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, United States
| | - Paritosh Ghosh
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Jennifer F. O’Connell
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, MD, United States
- *Correspondence: Qing-Rong Liu, ; Josephine M. Egan,
| |
Collapse
|
18
|
Wu Y, Zhang N, Wei X, Lu S, Li S, Hashimoto K, Dijkstra JM, Xia C. The Structure of a Peptide-Loaded Shark MHC Class I Molecule Reveals Features of the Binding between β 2-Microglobulin and H Chain Conserved in Evolution. THE JOURNAL OF IMMUNOLOGY 2021; 207:308-321. [PMID: 34145057 DOI: 10.4049/jimmunol.2001165] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/23/2021] [Indexed: 12/22/2022]
Abstract
Cartilaginous fish are the most primitive extant species with MHC molecules. Using the nurse shark, the current study is, to the best of our knowledge, the first to present a peptide-loaded MHC class I (pMHC-I) structure for this class of animals. The overall structure was found to be similar between cartilaginous fish and bony animals, showing remarkable conservation of interactions between the three pMHC-I components H chain, β2-microglobulin (β2-m), and peptide ligand. In most previous studies, relatively little attention was given to the details of binding between the H chain and β2-m, and our study provides important new insights. A pronounced conserved feature involves the insertion of a large β2-m F56+W60 hydrophobic knob into a pleat of the β-sheet floor of the H chain α1α2 domain, with the knob being surrounded by conserved residues. Another conserved feature is a hydrogen bond between β2-m Y10 and a proline in the α3 domain of the H chain. By alanine substitution analysis, we found that the conserved β2-m residues Y10, D53, F56, and W60-each binding the H chain-are required for stable pMHC-I complex formation. For the β2-m residues Y10 and F56, such observations have not been reported before. The combined data indicate that for stable pMHC-I complex formation β2-m should not only bind the α1α2 domain but also the α3 domain. Knowing the conserved structural features of pMHC-I should be helpful for future elucidations of the mechanisms of pMHC-I complex formation and peptide editing.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Xiaohui Wei
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Shuangshuang Lu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Shen Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| | - Keiichiro Hashimoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China; and
| |
Collapse
|