1
|
Xu Q, Li L, Zhu R. T Cell Exhaustion in Allergic Diseases and Allergen Immunotherapy: A Novel Biomarker? Curr Allergy Asthma Rep 2025; 25:18. [PMID: 40091122 DOI: 10.1007/s11882-025-01199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE OF REVIEW This review explores the emerging role of T cell exhaustion in allergic diseases and allergen immunotherapy (AIT). It aims to synthesize current knowledge on the mechanisms of T cell exhaustion, evaluate its potential involvement in allergic inflammation, and assess its implications as a novel biomarker for predicting and monitoring AIT efficacy. RECENT FINDINGS Recent studies highlight that T cell exhaustion, characterized by co-expression of inhibitory receptors (e.g., PD-1, CTLA-4, TIM-3), diminished cytokine production, and altered transcriptional profiles, may suppress type 2 inflammation in allergic diseases. In allergic asthma, exhausted CD4 + T cells exhibit upregulated inhibitory receptors, correlating with reduced IgE levels and airway hyperreactivity. During AIT, prolonged high-dose allergen exposure drives allergen-specific Th2 and T follicular helper (Tfh) cell exhaustion, potentially contributing to immune tolerance. Notably, clinical improvements in AIT correlate with depletion of allergen-specific Th2 cells and persistent expression of exhaustion markers (e.g., PD-1, CTLA-4) during maintenance phases. Blockade of inhibitory receptors (e.g., PD-1) enhances T cell activation, underscoring their dual regulatory role in allergy. T cell exhaustion represents a double-edged sword in allergy: it may dampen pathological inflammation in allergic diseases while serving as a mechanism for AIT-induced tolerance. The co-expression of inhibitory receptors on allergen-specific T cells emerges as a promising biomarker for AIT efficacy. Future research should clarify the transcriptional and metabolic drivers of exhaustion in allergy, validate its role across diverse allergic conditions, and optimize strategies to harness T cell exhaustion for durable immune tolerance. These insights could revolutionize therapeutic approaches and biomarker development in allergy management.
Collapse
Affiliation(s)
- Qingxiu Xu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Le Li
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rongfei Zhu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Luo J, Zhang C, Chen D, Chang T, Chen S, Lin Z, Yi C, Tang ZH. Tim-3 pathway dysregulation and targeting in sepsis-induced immunosuppression. Eur J Med Res 2024; 29:583. [PMID: 39696711 PMCID: PMC11656820 DOI: 10.1186/s40001-024-02203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Sepsis is a major medical problem which causes millions of deaths worldwide every year. The host immune response in sepsis is characterized by acute inflammation and a simultaneous state of immunosuppression. In the later stage of sepsis, immunosuppression is a crucial factor that increases the susceptibility of septic patients to secondary infection and mortality. It is characterized by T cell exhaustion, excessive production of anti-inflammatory cytokines, hyperproliferation of immune suppressor cells and aberrant expression of immune checkpoint molecules. T cell immunoglobulin and mucin domain 3 (Tim-3), an immune checkpoint molecule, is found on the surface of various cells, including macrophages, NK cells, NKT cells, and T cells. There are four different ligands for Tim-3, and accumulating evidence indicates that Tim-3 and its ligands play a crucial role in regulating immune cell dysfunction during sepsis. Anti-Tim-3 antibodies have been applied in the field of cancer immunotherapy and have achieved positive therapeutic effects in some clinical trials. However, the therapeutic efficacy of Tim-3 blockade is still controversial in animal models of sepsis. These challenges highlight the need for a deeper understanding of Tim-3 signaling in sepsis. This review examines the comprehensive effect of Tim-3 signaling in the development of sepsis-induced immunosuppression and the therapeutic efficacy of Tim-3 blockade.
Collapse
Affiliation(s)
- Jialiu Luo
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Zhang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deng Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Teding Chang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunyao Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Lin
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao-Hui Tang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
4
|
He W, Yao C, Wang K, Duan Z, Wang S, Xie L. Single-cell landscape of immunological responses in elderly patients with sepsis. Immun Ageing 2024; 21:40. [PMID: 38909272 PMCID: PMC11193269 DOI: 10.1186/s12979-024-00446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
Sepsis is a dysregulated host response to severe infections, and immune dysfunction plays a crucial role in its pathogenesis. Elderly patients, a special population influenced by immunosenescence, are more susceptible to sepsis and have a worse prognosis. However, the immunopathogenic mechanisms underlying sepsis in elderly patients remain unclear. Here, we performed single-cell RNA sequencing of peripheral blood samples from young and old subjects and patients with sepsis. By exploring the transcriptional profiles of immune cells, we analyzed immune cell compositions, phenotype shifts, expression heterogeneities, and intercellular communication. In elderly patients with sepsis, innate immune cells (e.g., monocytes and DCs) exhibit decreased antigen presentation, presenting an overactive inflammatory and senescent phenotype. However, the immunophenotype of T cells shifted to characterize effector, memory, and exhaustion. Moreover, we identified strong interferon-γ responses of T cells in both aging and sepsis groups and a deranged inflammaging status in elderly sepsis patients. Tregs in elderly patients with sepsis showed increased abundance and enhanced immunosuppressive effects. In addition, metabolism-associated pathways were upregulated in T cells in elderly patients with sepsis, and the lysine metabolism pathway was enriched in Tregs. Cell-cell interaction analysis showed that the expression profile of ligand-receptor pairs was probably associated with aggravated immune dysfunction in elderly patients with sepsis. A novel HLA-KIR interaction was observed between Tregs and CD8 + T cells. These findings illustrate the immunological hallmarks of sepsis in elderly patients, and highlight that immunosuppressive and metabolic regulatory pathways may undergo important alterations in elderly patients with sepsis.
Collapse
Affiliation(s)
- Wanxue He
- Department of Pulmonary and Critical Care Medicine, Xuanwu Hospital Capital Medical University, Beijing, China
- College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chen Yao
- College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kaifei Wang
- College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhimei Duan
- College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
5
|
Wang C, Liu J, Wu Q, Wang Z, Hu B, Bo L. The role of TIM-3 in sepsis: a promising target for immunotherapy? Front Immunol 2024; 15:1328667. [PMID: 38576606 PMCID: PMC10991702 DOI: 10.3389/fimmu.2024.1328667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Sepsis remains a significant cause of mortality and morbidity worldwide, with limited effective treatment options. The T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) has emerged as a potential therapeutic target in various immune-related disorders. This narrative review aims to explore the role of TIM-3 in sepsis and evaluate its potential as a promising target for immunotherapy. We discuss the dynamic expression patterns of TIM-3 during sepsis and its involvement in regulating immune responses. Furthermore, we examine the preclinical studies investigating the regulation of TIM-3 signaling pathways in septic models, highlighting the potential therapeutic benefits and challenges associated with targeting TIM-3. Overall, this review emphasizes the importance of TIM-3 in sepsis pathogenesis and underscores the promising prospects of TIM-3-based immunotherapy as a potential strategy to combat this life-threatening condition.
Collapse
Affiliation(s)
- Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinhai Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qi Wu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Baoji Hu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Xiong W, Xia J, Peng X, Tan Y, Chen W, Zhou M, Yang C, Wang W. Novel therapeutic role of Ganoderma Polysaccharides in a septic mouse model - The key role of macrophages. Heliyon 2024; 10:e26732. [PMID: 38449666 PMCID: PMC10915390 DOI: 10.1016/j.heliyon.2024.e26732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Ganoderma lucidum polysaccharides (G. PS) have been recognized for their immune-modulating properties. In this study, we investigated the impact of G. PS in a sepsis mouse model, exploring its effects on survival, inflammatory cytokines, Treg cell differentiation, bacterial load, organ dysfunction, and related pathways. We also probed the role of macrophages through chlorphosphon-liposome pretreatment. Using the cecal ligation and puncture (CLP) model, we categorized mice into normal, PBS, and G. PS injection groups. G. PS significantly enhanced septic mouse survival, regulated inflammatory cytokines (TNF-α, IL-17A, IL-6, IL-10), and promoted CD4+Foxp3+ Treg cell differentiation in spleens. Additionally, G. PS reduced bacterial load, mitigated organ damage, and suppressed the NF-κB pathway. In vitro, G. PS facilitated CD4+ T cell differentiation into Treg cells via the p-STAT5 pathway. Chlorphosphon-liposome pretreatment heightened septic mortality, bacterial load, biochemical markers, and organ damage, emphasizing macrophages' involvement. G. PS demonstrated significant protective effects in septic mice by modulating inflammatory responses, enhancing Treg cell differentiation, diminishing bacterial load, and inhibiting inflammatory pathways. These findings illuminate the therapeutic potential of G. PS in sepsis treatment.
Collapse
Affiliation(s)
- Wei Xiong
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Jing Xia
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Xiaoyuan Peng
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Ying Tan
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Wansong Chen
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Minghua Zhou
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Ce Yang
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, 404120, PR China
| |
Collapse
|
7
|
Yang J, Chen J, Zhang M, Zhou Q, Yan B. Prognostic impacts of repeated sepsis in intensive care unit on autoimmune disease patients: a retrospective cohort study. BMC Infect Dis 2024; 24:197. [PMID: 38350868 PMCID: PMC10863122 DOI: 10.1186/s12879-024-09072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Autoimmune diseases (ADs) may be complicated by sepsis when intensive care unit (ICU) admission. But repeated sepsis among AD patients has not been studied yet. The aim of this study is to investigate the impact of repeated in-ICU sepsis on the 1-year overall-cause mortality, septic shock and in-ICU death of AD patients. METHODS Data of AD patients with sepsis retrieved from Medical Information Mart for Intensive Care IV (MIMIC-IV) database were divided into the single group and the repeated group according to the frequency of in-ICU sepsis. Propensity score matching was used to balance inter-group bias. Cox proportional hazard regression and sensitivity analysis were utilized to assess the variables on mortality. RESULTS The incidence of repeated in-ICU sepsis in baseline was 19.8%. The repeated in-ICU sepsis was a risk factor for 1-year overall-cause mortality among AD patients (adjusted hazard ratio [HR] = 1.50, 95% CI: 1.16-1.93, P = 0.002), with robust adjusted HRs by the adjustment for confounders in the sensitivity analysis (all P < 0.01). Maximum Sequential Organ Failure Assessment (Max SOFA), Charlson comorbidity index (CCI) and Simplified Acute Physiology Score-II (SAPS-II) were risk factors for 1-year overall-cause mortality among AD with repeated sepsis (Max SOFA: HR = 1.09, P = 0.002; CCI: HR = 1.08, P = 0.039; SAPS-II: HR = 1.03, P < 0.001). CONCLUSIONS Compared to single hit, repeated in-ICU sepsis was independently related to a higher risk of 1-year overall-cause mortality among AD patients. Assessment tools (Higher SOFA, CCI and SAPS-II scores) were closely linked to poor prognosis of AD with repeated sepsis and helped to reflect ill physical conditions for the patients.
Collapse
Affiliation(s)
- Jinming Yang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue Alley, 610041, Chengdu, China
| | - Jie Chen
- Department of Rheumatology, People's Hospital of Leshan, Leshan, China
| | - Min Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue Alley, 610041, Chengdu, China
| | - Qingsa Zhou
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue Alley, 610041, Chengdu, China
| | - Bing Yan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, No.37 Guoxue Alley, 610041, Chengdu, China.
| |
Collapse
|
8
|
Zhou G, Li Y, Ren X, Qin G, Zhang Z, Zhao H, Gao L, Jiang X. Identifying prognostic characteristics of m6A-related glycolysis gene and predicting the immune infiltration landscape in bladder cancer. Cancer Cell Int 2023; 23:300. [PMID: 38017469 PMCID: PMC10683108 DOI: 10.1186/s12935-023-03160-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUNDS Glucose metabolism is associated with the development of cancers, and m6A RNA methylation regulator-related genes play vital roles in bladder urothelial carcinoma (BLCA). However, the role of m6A-related glucose metabolism genes in BLCA occurrence and development has not yet been reported. Our study aims to integrate m6A- and glycolysis-related genes and find potential gene targets for clinical diagnosis and prognosis of BLCA patients. METHODS Sequencing data and clinical information on BLCA were extracted from common databases. Univariate Cox analysis was used to screen prognosis-related m6A glucose metabolism genes; BLCA subtypes were distinguished using consensus clustering analysis. Subsequently, genes associated with BLCA occurrence and development were identified using the "limma" R package. The risk score was then calculated, and a nomogram was constructed to predict survival rate of BLCA patients. Functional and immune microenvironment analyses were performed to explore potential functions and mechanisms of the different risk groups. RESULTS Based on 70 prognosis-related m6A glucose metabolism genes, BLCA was classified into two subtypes, and 34 genes associated with its occurrence and development were identified. Enrichment analysis revealed an association of genes in high-risk groups with tricarboxylic acid cycle function and glycolysis. Moreover, significantly higher levels of seven immune checkpoints, 14 immune checkpoint inhibitors, and 32 immune factors were found in high-risk score groups. CONCLUSIONS This study identified two biomarkers associated with BLCA prognosis; these findings may deepen our understanding of the role of m6A-related glucose metabolism genes in BLCA development. We constructed a m6A-related glucose metabolism- and immune-related gene risk model, which could effectively predict patient prognosis and immunotherapy response and guide individualized immunotherapy.
Collapse
Affiliation(s)
- Guanwen Zhou
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yi Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiangguo Ren
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Guoliang Qin
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhaocun Zhang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Haifeng Zhao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lijian Gao
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China.
- Department of Urology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, 253000, China.
| | - Xianzhou Jiang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
9
|
Vlasova VV, Shmagel KV. T Lymphocyte Metabolic Features and Techniques to Modulate Them. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1857-1873. [PMID: 38105204 DOI: 10.1134/s0006297923110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 08/27/2023] [Indexed: 12/19/2023]
Abstract
T cells demonstrate high degree of complexity and broad range of functions, which distinguish them from other immune cells. Throughout their lifetime, T lymphocytes experience several functional states: quiescence, activation, proliferation, differentiation, performance of effector and regulatory functions, memory formation, and apoptosis. Metabolism supports all functions of T cells, providing lymphocytes with energy, biosynthetic substrates, and signaling molecules. Therefore, T cells usually restructure their metabolism as they transition from one functional state to another. Strong association between the metabolism and T cell functions implies that the immune response can be controlled by manipulating metabolic processes within T lymphocytes. This review aims to highlight the main metabolic adaptations necessary for the T cell function, as well as the recent progress in techniques to modulate metabolic features of lymphocytes.
Collapse
Affiliation(s)
- Violetta V Vlasova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 614081, Perm, Russia.
| | - Konstantin V Shmagel
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 614081, Perm, Russia
| |
Collapse
|
10
|
Hu Z, Dong D, Peng F, Zhou X, Sun Q, Chen H, Chang W, Gu Q, Xie J, Yang Y. Combination of NK and Other Immune Markers at Early Phase Stratify the Risk of Sepsis Patients: A Retrospective Study. J Inflamm Res 2023; 16:4725-4732. [PMID: 37872958 PMCID: PMC10590563 DOI: 10.2147/jir.s426828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Purpose Immune dysfunction plays a pivotal role in sepsis pathogenesis. Previous studies have revealed the crucial role of T cells and human leukocyte antigen-DR (HLA-DR) in sepsis. However, the function of natural killer (NK) cells remains unclear. This study aimed to investigate whether NK cells are associated with sepsis prognosis. In addition, we aimed to explore the interrelation and influence between NK and other immunological features in patients with sepsis. Patients and Methods This retrospective, observational study included patients with sepsis from two hospitals in mainland China. The clinical characteristics and immune results during the early phase were collected. Patients were classified according to the level of immune cells to analyze the relationship between immunological features and 28-day mortality. Results A total of 984 patients were included in this study. Non-survivors were older and had lower levels of lymphocytes, monocytes, NK cells, HLA-DR, and T cells. Patients were classified into eight groups according to their levels of NK cells, HLA-DR, and T cells. Only patients with decreased NK and T cell counts showed a significant increase in 28-day mortality. An increase in CD8+ T cells was correlated with the alleviation of 28-day mortality only among patients with high NK cell levels. Conclusion This study provides novel insights into the association between NK cells and 28-day mortality as well as the interrelation between NK cells and other immune cells in sepsis. The relationship between CD8+ T cells and 28-day mortality in sepsis is dependent on NK cell count.
Collapse
Affiliation(s)
- Zihan Hu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Danjiang Dong
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Fei Peng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Xing Zhou
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Hui Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, People’s Republic of China
| | - Wei Chang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Qin Gu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
11
|
Wang Q, Wang C, Zhang W, Tao Y, Guo J, Liu Y, Liu Z, Liu D, Mei J, Chen F. Identification of biomarkers related to sepsis diagnosis based on bioinformatics and machine learning and experimental verification. Front Immunol 2023; 14:1087691. [PMID: 37449204 PMCID: PMC10337583 DOI: 10.3389/fimmu.2023.1087691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Sepsis is a systemic inflammatory response syndrome caused by bacteria and other pathogenic microorganisms. Every year, approximately 31.5 million patients are diagnosed with sepsis, and approximately 5.3 million patients succumb to the disease. In this study, we identified biomarkers for diagnosing sepsis analyzed the relationships between genes and Immune cells that were differentially expressed in specimens from patients with sepsis compared to normal controls. Finally, We verified its effectiveness through animal experiments. Specifically, we analyzed datasets from four microarrays(GSE11755、GSE12624、GSE28750、GSE48080) that included 106 blood specimens from patients with sepsis and 69 normal human blood samples. SVM-RFE analysis and LASSO regression model were carried out to screen possible markers. The composition of 22 immune cell components in patients with sepsis were also determined using CIBERSORT. The expression level of the biomarkers in Sepsis was examined by the use of qRT-PCR and Western Blot (WB). We identified 50 differentially expressed genes between the cohorts, including 2 significantly upregulated and 48 significantly downregulated genes, and KEGG pathway analysis identified Salmonella infection, human T cell leukemia virus 1 infection, Epstein-Barr virus infection, hepatitis B, lysosome and other pathways that were significantly enriched in blood from patients with sepsis. Ultimately, we identified COMMD9, CSF3R, and NUB1 as genes that could potentially be used as biomarkers to predict sepsis, which we confirmed by ROC analysis. Further, we identified a correlation between the expression of these three genes and immune infiltrate composition. Immune cell infiltration analysis revealed that COMMD9 was correlated with T cells regulatory (Tregs), T cells follicular helper, T cells CD8, et al. CSF3R was correlated with T cells regulatory (Tregs), T cells follicular helper, T cells CD8, et al. NUB1 was correlated with T cells regulatory (Tregs), T cells gamma delta, T cells follicular helper, et al. Taken together, our findings identify potential new diagnostic markers for sepsis that shed light on novel mechanisms of disease pathogenesis and, therefore, may offer opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Qianfei Wang
- Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital ,Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chenxi Wang
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Weichao Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital ,Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yulei Tao
- Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital ,Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Junli Guo
- Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital ,Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuan Liu
- Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital ,Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhiliang Liu
- Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital ,Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Dong Liu
- Hebei University of Chinese Medicine, Shijiazhuang, China
- The First Affiliated Hospital ,Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jianqiang Mei
- The First Affiliated Hospital ,Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Fenqiao Chen
- The First Affiliated Hospital ,Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
12
|
Zhong S, Yin Y. Regulatory role of the programmed cell death 1 signaling pathway in sepsis induced immunosuppression. Front Immunol 2023; 14:1183542. [PMID: 37292207 PMCID: PMC10244656 DOI: 10.3389/fimmu.2023.1183542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Sepsis is a multiple organ dysfunction syndrome caused by the host's immune response to infection, with extremely high incidence and mortality. Immunosuppression is an essential pathophysiological alteration that influences the clinical treatment and prognosis of sepsis. Recent studies have suggested that the programmed cell death 1 signaling pathway is involved in the formation of immunosuppression in sepsis. In this review, we systematically present the mechanisms of immune dysregulation in sepsis and elucidate the expression and regulatory effects of the programmed cell death 1 signaling pathway on immune cells associated with sepsis. We then specify current research developments and prospects for the application of the programmed cell death 1 signaling pathway in immunomodulatory therapy for sepsis. Several open questions and future research are discussed at the end.
Collapse
Affiliation(s)
- Shubai Zhong
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanqin Yin
- Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Li Q, Sun M, Zhou Q, Li Y, Xu J, Fan H. Integrated analysis of multi-omics data reveals T cell exhaustion in sepsis. Front Immunol 2023; 14:1110070. [PMID: 37077915 PMCID: PMC10108839 DOI: 10.3389/fimmu.2023.1110070] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
BackgroundSepsis is a heterogeneous disease, therefore the single-gene-based biomarker is not sufficient to fully understand the disease. Higher-level biomarkers need to be explored to identify important pathways related to sepsis and evaluate their clinical significance.MethodsGene Set Enrichment Analysis (GSEA) was used to analyze the sepsis transcriptome to obtain the pathway-level expression. Limma was used to identify differentially expressed pathways. Tumor IMmune Estimation Resource (TIMER) was applied to estimate immune cell abundance. The Spearman correlation coefficient was used to find the relationships between pathways and immune cell abundance. Methylation and single-cell transcriptome data were also employed to identify important pathway genes. Log-rank test was performed to test the prognostic significance of pathways for patient survival probability. DSigDB was used to mine candidate drugs based on pathways. PyMol was used for 3-D structure visualization. LigPlot was used to plot the 2-D pose view for receptor-ligand interaction.ResultsEighty-four KEGG pathways were differentially expressed in sepsis patients compared to healthy controls. Of those, 10 pathways were associated with 28-day survival. Some pathways were significantly correlated with immune cell abundance and five pathways could be used to distinguish between systemic inflammatory response syndrome (SIRS), bacterial sepsis, and viral sepsis with Area Under the Curve (AUC) above 0.80. Seven related drugs were screened using survival-related pathways.ConclusionSepsis-related pathways can be utilized for disease subtyping, diagnosis, prognosis, and drug screening.
Collapse
Affiliation(s)
- Qiaoke Li
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Mingze Sun
- Department of Intensive Care Unit, Sichuan Provincial Crops Hospital of Chinese People’s Armed Police Force, Leshan, China
| | - Qi Zhou
- Department of Oncology, Jiang’an Hospital of Traditional Chinese Medicine, Yibin, China
| | - Yulong Li
- Department of Intensive Care Unit, Sichuan Provincial Crops Hospital of Chinese People’s Armed Police Force, Leshan, China
| | - Jinmei Xu
- Department of Intensive Care Unit, Sichuan Provincial Crops Hospital of Chinese People’s Armed Police Force, Leshan, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
- *Correspondence: Hong Fan,
| |
Collapse
|
14
|
Ning J, Sun K, Wang X, Fan X, Jia K, Cui J, Ma C. Use of machine learning-based integration to develop a monocyte differentiation-related signature for improving prognosis in patients with sepsis. Mol Med 2023; 29:37. [PMID: 36941583 PMCID: PMC10029317 DOI: 10.1186/s10020-023-00634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Although significant advances have been made in intensive care medicine and antibacterial treatment, sepsis is still a common disease with high mortality. The condition of sepsis patients changes rapidly, and each hour of delay in the administration of appropriate antibiotic treatment can lead to a 4-7% increase in fatality. Therefore, early diagnosis and intervention may help improve the prognosis of patients with sepsis. METHODS We obtained single-cell sequencing data from 12 patients. This included 14,622 cells from four patients with bacterial infectious sepsis and eight patients with sepsis admitted to the ICU for other various reasons. Monocyte differentiation trajectories were analyzed using the "monocle" software, and differentiation-related genes were identified. Based on the expression of differentiation-related genes, 99 machine-learning combinations of prognostic signatures were obtained, and risk scores were calculated for all patients. The "scissor" software was used to associate high-risk and low-risk patients with individual cells. The "cellchat" software was used to demonstrate the regulatory relationships between high-risk and low-risk cells in a cellular communication network. The diagnostic value and prognostic predictive value of Enah/Vasp-like (EVL) were determined. Clinical validation of the results was performed with 40 samples. The "CBNplot" software based on Bayesian network inference was used to construct EVL regulatory networks. RESULTS We systematically analyzed three cell states during monocyte differentiation. The differential analysis identified 166 monocyte differentiation-related genes. Among the 99 machine-learning combinations of prognostic signatures constructed, the Lasso + CoxBoost signature with 17 genes showed the best prognostic prediction performance. The highest percentage of high-risk cells was found in state one. Cell communication analysis demonstrated regulatory networks between high-risk and low-risk cell subpopulations and other immune cells. We then determined the diagnostic and prognostic value of EVL stabilization in multiple external datasets. Experiments with clinical samples demonstrated the accuracy of this analysis. Finally, Bayesian network inference revealed potential network mechanisms of EVL regulation. CONCLUSIONS Monocyte differentiation-related prognostic signatures based on the Lasso + CoxBoost combination were able to accurately predict the prognostic status of patients with sepsis. In addition, low EVL expression was associated with poor prognosis in sepsis.
Collapse
Affiliation(s)
- Jingyuan Ning
- Department of Immunology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Keran Sun
- Department of Immunology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xuan Wang
- Department of Immunology, Hebei Medical University, Shijiazhuang, People's Republic of China
- Department of Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaoqing Fan
- Department of Immunology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Keqi Jia
- Department of Pathology, Shijiazhuang People's Hospital, Shijiazhuang, People's Republic of China
| | - Jinlei Cui
- Department of Immunology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Cuiqing Ma
- Department of Immunology, Hebei Medical University, Shijiazhuang, People's Republic of China.
| |
Collapse
|
15
|
Wu D, Shi Y, Zhang H, Miao C. Epigenetic mechanisms of Immune remodeling in sepsis: targeting histone modification. Cell Death Dis 2023; 14:112. [PMID: 36774341 PMCID: PMC9922301 DOI: 10.1038/s41419-023-05656-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/13/2023]
Abstract
Sepsis is a life-threatening disorder disease defined as infection-induced dysregulated immune responses and multiple organ dysfunction. The imbalance between hyperinflammation and immunosuppression is a crucial feature of sepsis immunity. Epigenetic modifications, including histone modifications, DNA methylation, chromatin remodeling, and non-coding RNA, play essential roles in regulating sepsis immunity through epi-information independent of the DNA sequence. In recent years, the mechanisms of histone modification in sepsis have received increasing attention, with ongoing discoveries of novel types of histone modifications. Due to the capacity for prolonged effects on immune cells, histone modifications can induce immune cell reprogramming and participate in the long-term immunosuppressed state of sepsis. Herein, we systematically review current mechanisms of histone modifications involved in the regulation of sepsis, summarize their role in sepsis from an immune perspective and provide potential therapeutic opportunities targeting histone modifications in sepsis treatment.
Collapse
Affiliation(s)
- Dan Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Pan H, Huo L, Shen W, Dai Z, Bao Y, Ji C, Zhang J. Study on the protective effect of berberine treatment on sepsis based on gut microbiota and metabolomic analysis. Front Nutr 2022; 9:1049106. [PMID: 36601077 PMCID: PMC9806126 DOI: 10.3389/fnut.2022.1049106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Sepsis, an infection with multiorgan dysfunction, is a serious burden on human health. Berberine (BBR), a bioactive component, has a protective effect on sepsis and the effect may be related to gut microbiota. However, studies on the role of BBR with gut microbiota in sepsis are lacking. Therefore, this study investigated the ameliorative effects and the underlying mechanisms of BBR on cecal ligature and puncture (CLP) rats. Methods This study has observed the effect of BBR on pathological injury, Inflammation, intestinal barrier function, gut microbiota, and metabolite change in CLP rats by Hematoxylin-eosin staining, enzyme-linked immunosorbent assays, flow cytometry, 16S rDNA, and metabolomics analyses. Results The inhibition effects of BBR treatment on the histological damage of the lung, kidney, and ileum, the interleukin (IL)-1b, IL-6, IL-17A, and monocyte chemokine-1 levels in serum in CLP rats were proved. Also, the BBR inhibited the diamine-oxidase and fluorescein isothiocyanate-dextran 40 levels, suggesting it can improve intestinal barrier function disorders. The cluster of differentiation (CD) 4+, CD8+, and CD25+ Forkhead box protein P3 (Foxp3) + T lymphocytes in splenocytes were up-regulated by BBR, while the IL-17A+CD4+ cell level was decreased. The abundance of gut microbiota in CLP rats was significantly different from that of the sham and BBR treatment rats. The significantly changed metabolites in the serum mainly included carbohydrates, phenols, benzoic acids, alcohols, vitamins et al. Additionally, this study predicted that the biological mechanism of BBR to ameliorate sepsis involves glycolysis-, nucleotide-, and amino acid-related metabolic pathways. Discussion This study proved the strong correlation between the improvement effect of BBR on sepsis and gut microbiota and analyzed by metabolomics that gut microbiota may improve CLP rats through metabolites, providing a scientific basis for BBR to improve sepsis and a new direction for the study of the biological mechanism.
Collapse
Affiliation(s)
- Huibin Pan
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Lixia Huo
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Weiyun Shen
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Zhuquan Dai
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Ying Bao
- Department of Surgery, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Chaohui Ji
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China,*Correspondence: Jie Zhang
| | - Jie Zhang
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China,Chaohui Ji
| |
Collapse
|
17
|
Zhong W, Li J, Li D, Li X, Liu M, Zhang T, Huang J, Huang G, Zeng H, Zhou M, Jiang W. ELEVATED PD-1/CD28 RATIO RATHER THAN PD-1 EXPRESSION IN CD8+ T CELLS PREDICTS NOSOCOMIAL INFECTION IN SEPSIS PATIENTS: A PROSPECTIVE, OBSERVATIONAL COHORT STUDY. Shock 2022; 58:111-118. [PMID: 36166194 PMCID: PMC9481292 DOI: 10.1097/shk.0000000000001967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACTBACKGROUND The expression of programmed cell death 1 receptor (PD-1) and CD28 on CD8+ T cells is considered to be related to immune function and prognosis markers in patients with sepsis. However, the relationship between the ratio of PD-1/CD28 and nosocomial infection has not been elucidated. Methods: A prospective, observational cohort study was conducted in a general intensive care unit. Patients were enrolled according to the sepsis-3 criteria and peripheral blood samples were collected within 24 hours of enrollment. Programmed cell death 1 receptor and CD28 expression on CD8+ T cells was assayed on day 1. Patients were followed up until 28 days. Multivariate regression analysis was used to assess independent risk factors for nosocomial infection. The accuracy of biomarkers for nosocomial infection and mortality was determined by the area under the receiver operating characteristic curve analysis. The association between biomarkers and 28-day mortality was assessed by Cox regression survival analysis. Results: A total of 181 patients were recruited, and 68 patients were finally included for analysis. Of these, 19 patients (27.9%) died during 28 days and 22 patients (32.4%) acquired nosocomial infection. The PD-1/CD28 ratio of patients with nosocomial infection was significantly higher than those without (0.27 [0.10-0.55] vs. 0.15 [0.08-0.28], P = 0.025). The PD-1/CD28 ratio in CD8+ T cells (odds ratio, 53.33; 95% confidence interval, 2.39-1188.22, P = 0.012) and duration of mechanical ventilation (odds ratio, 1.14; 95% confidence interval, 1.06-1.24; P = 0.001) were independently associated with nosocomial infection. The area under the receiver operating characteristic curve of PD-1/CD28 ratio in CD8+ T cells was 0.67 (0.52-0.82). The PD-1/CD28 ratio in CD8+ T cells of the nonsurvivors was significantly higher than the survivors (0.23 [0.15-0.52] vs. 0.14 [0.07-0.32]); Cox regression analysis showed that the survival time of patients with PD-1/CD28 ratio in CD8+ T cells of 0.13 or greater was shorter compared with patients with lower levels (hazard ratio, 4.42 [1.29-15.20], χ2 = 6.675; P = 0.010). Conclusions: PD-1/CD28 ratio in CD8+ T cells at admission may serve as a novel prognostic biomarker for predicting nosocomial infection and mortality.
Collapse
Affiliation(s)
- Wenhong Zhong
- Department of Emergency, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing Li
- Department of Emergency, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Dongxin Li
- Department of Emergency, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xusheng Li
- Department of Emergency, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mengting Liu
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Tiancao Zhang
- Department of Emergency, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Medical College, Shantou University, Shantou, China
| | - Junhong Huang
- Department of Emergency, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Guoge Huang
- Department of Emergency, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangzhou, China
| | - Hongke Zeng
- Department of Critical Care Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Maohua Zhou
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenqiang Jiang
- Department of Emergency, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
18
|
Lu G, Li Q, Liu J, Jia Y, Tang J, Zhang X. Inhibition of endoplasmic reticulum stress and the downstream pathways protects CD4 + T cells against apoptosis and immune dysregulation in sepsis. IUBMB Life 2022; 74:1070-1080. [PMID: 35859520 DOI: 10.1002/iub.2666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/10/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Immunosuppression mediated by CD4+ T cell apoptosis and dysfunction is a key factor in promoting the progression of sepsis. Endoplasmic reticulum (ER) stress participates in the apoptosis and dysfunction of immune cells. AIM We aimed to investigate the role of ER stress inhibition in CD4+ T cells in both in vitro and in vivo models of sepsis. METHODS In vitro model of sepsis was established with lipopolysaccharide (LPS) and the rat model of sepsis was established using cecal ligation and puncture (CLP). After the LPS treatment or CLP, ER stress inhibitors including 4-PBA, SNJ-1945, and SP600125 were used to treat cells or rats, and the CD4+ T cells were obtained by magnetic bead sorting. The effects of ER stress inhibitors on apoptosis and the function of CD4+ T cells were evaluated. RESULTS After the LPS stimulation or CLP, the levels of ER stress and downstream markers (PERK, eIF2α, IRE-1α, ATF6, ATF4, XBP-1s, GRP78, CHOP, and p-JNK) were increased in CD4+ T cells at the beginning of sepsis. Meanwhile, the number of apoptotic CD4+ T cells markedly increased. In addition, sepsis impaired the function of CD4+ T cells, manifested by the increased population of Th1, Th2, Th17, and Treg, as well as the production of TNF-α, interleukin (IL)-6, IL-4, and IL-10. However, inhibitors of ER stress, JNK, and calpain all decreased the induction of Th1 and Th17, enhanced the increase of Th2 and Treg, decreased the production of TNF-α and IL-6, and enhanced the production of IL-4 and IL-10. CONCLUSION Our findings indicate that ER stress inhibitors may play a protective role by reducing CD4+ T cell apoptosis and maintaining CD4+ T cell function, which may be useful for enhancing the immune function and poor prognosis of patients with sepsis.
Collapse
Affiliation(s)
- Gang Lu
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qingqing Li
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianjun Liu
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yanan Jia
- Department of Geriatrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xuemin Zhang
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Gao YL, Yao Y, Zhang X, Chen F, Meng XL, Chen XS, Wang CL, Liu YC, Tian X, Shou ST, Chai YF. Regulatory T Cells: Angels or Demons in the Pathophysiology of Sepsis? Front Immunol 2022; 13:829210. [PMID: 35281010 PMCID: PMC8914284 DOI: 10.3389/fimmu.2022.829210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a syndrome characterized by life-threatening organ dysfunction caused by the dysregulated host response to an infection. Sepsis, especially septic shock and multiple organ dysfunction is a medical emergency associated with high morbidity, high mortality, and prolonged after-effects. Over the past 20 years, regulatory T cells (Tregs) have been a key topic of focus in all stages of sepsis research. Tregs play a controversial role in sepsis based on their heterogeneous characteristics, complex organ/tissue-specific patterns in the host, the multi-dimensional heterogeneous syndrome of sepsis, the different types of pathogenic microbiology, and even different types of laboratory research models and clinical research methods. In the context of sepsis, Tregs may be considered both angels and demons. We propose that the symptoms and signs of sepsis can be attenuated by regulating Tregs. This review summarizes the controversial roles and Treg checkpoints in sepsis.
Collapse
Affiliation(s)
- Yu-lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Yan-fen Chai, ; Yu-lei Gao,
| | - Ying Yao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang Zhang
- Department of Emergency Medicine, Rizhao People’s Hospital of Shandong Province, Rizhao, China
| | - Fang Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiang-long Meng
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin-sen Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao-lan Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Tian
- Department of Medical Research, Beijing Qiansong Technology Development Company, Beijing, China
| | - Song-tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Yan-fen Chai, ; Yu-lei Gao,
| |
Collapse
|
20
|
Pan Y, Li J, Xia X, Wang J, Jiang Q, Yang J, Dou H, Liang H, Li K, Hou Y. β-glucan-coupled superparamagnetic iron oxide nanoparticles induce trained immunity to protect mice against sepsis. Am J Cancer Res 2022; 12:675-688. [PMID: 34976207 PMCID: PMC8692910 DOI: 10.7150/thno.64874] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Innate immune memory, also termed “trained immunity”, is thought to protect against experimental models of infection, including sepsis. Trained immunity via reprogramming monocytes/macrophages has been reported to result in enhanced inflammatory status and antimicrobial activity against infection in sepsis. However, a safe and efficient way to induce trained immunity remains unclear. Methods: β-glucan is a prototypical agonist for inducing trained immunity. Ferumoxytol, superparamagnetic iron oxide (SPIO) with low cytotoxicity, has been approved by FDA for clinical use. We synthesized novel nanoparticles BSNPs by coupling β-glucan with SPIO. BSNPs were further conjugated with fluorescein for quantitative analysis and trace detection of β-glucan on BSNPs. Inflammatory cytokine levels were measured by ELISA and qRT-PCR, and the phagocytosis of macrophages was detected by flow cytometry and confocal microscopy. The therapeutic effect of BSNPs was evaluated on the well-established sepsis mouse model induced by both clinical Escherichia coli (E. coli) and cecal ligation and puncture (CLP). Results: BSNPs were synthesized successfully with a 3:20 mass ratio of β-glucan and SPIO on BSNPs, which were mainly internalized by macrophages and accumulated in the lungs and livers of mice. BSNPs effectively reprogrammed macrophages to enhance the production of trained immunity markers and phagocytosis toward bacteria. BSNP-induced trained immunity protected mice against sepsis caused by E. coli and CLP and also against secondary infection. We found that BSNP treatment elevated Akt, S6, and 4EBP phosphorylation, while mTOR inhibitors decreased the trained immunity markers and phagocytosis enhanced by BSNPs. Furthermore, the PCR Array analysis revealed Igf1, Sesn1, Vegfa, and Rps6ka5 as possible key regulators of mTOR signaling during trained immunity. BSNP-induced trained immunity mainly regulated cellular signal transduction, protein modification, and cell cycle by modulating ATP binding and the kinase activity. Our results indicated that BSNPs induced trained immunity in an mTOR-dependent manner. Conclusion: Our data highlight that the trained immunity of macrophages is an effective strategy against sepsis and suggest that BSNPs are a powerful tool for inducing trained immunity to prevent and treat sepsis and secondary infections.
Collapse
|
21
|
Van Laecke S, Van Damme K, Dendooven A. Immunosenescence: an unexplored role in glomerulonephritis. Clin Transl Immunology 2022; 11:e1427. [PMID: 36420421 PMCID: PMC9676375 DOI: 10.1002/cti2.1427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022] Open
Abstract
Immunosenescence is a natural ageing phenomenon with alterations in innate and especially adaptive immunity and contributes to reduced antimicrobial defence and chronic low‐grade inflammation. This is mostly reflected by an increase in organ‐directed and/or circulating reactive and cytolytic terminally differentiated T cells that have lost their expression of the costimulatory receptor CD28. Apart from being induced by a genetic predisposition, ageing or viral infections (particularly cytomegalovirus infection), immunosenescence is accelerated in many inflammatory diseases and uraemia. This translates into an enhancement of vascular inflammation and cardiovascular disease varying from endothelial dysfunction to plaque rupture. Emerging data point to a mechanistic role of CD28null T cells in glomerulonephritis, where they initiate and propagate local inflammation in concordance with dendritic cells and macrophages. They are suitably equipped to escape immunological dampening by the absence of homing to lymph nodes, anti‐apoptotic properties and resistance to suppression by regulatory T cells. Early accumulation of senescent CD28null T cells precedes glomerular or vascular injury, and targeting these cells could open avenues for early treatment interventions that aim at abrogating a detrimental vicious cycle.
Collapse
Affiliation(s)
| | - Karel Van Damme
- Renal Division Ghent University Hospital Ghent Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, Center for Inflammation Research VIB Center for Inflammation Research Ghent Belgium
| | | |
Collapse
|