1
|
Shahedi F, Naseri S, Momennezhad M, Zare H. MR Imaging Techniques for Microenvironment Mapping of the Glioma Tumors: A Systematic Review. Acad Radiol 2025:S1076-6332(25)00066-2. [PMID: 39894708 DOI: 10.1016/j.acra.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 02/04/2025]
Abstract
RATIONALE AND OBJECTIVES The tumor microenvironment (TME) is a critical regulator of cancer progression, metastasis, and treatment response. Currently, various imaging approaches exist to assess the pathophysiological features of the TME. This systematic review provides an overview of magnetic resonance imaging (MRI) methods used in clinical practice to characterize the pathophysiological features of the gliomas TME. METHODS This review involved a systematic comprehensive search of original open-access articles reporting the clinical use of MR imaging in glioma patients of all ages in the PubMed, Scopus, and Web of Science databases between January 2010 and December 2023. We restricted our research to papers published in the English language. RESULTS A total of 1137 studies were preliminarily identified through electronic database searches. After duplicate studies were removed, 44 studies met the eligibility criteria. The glioma TME was accompanied by alterations in metabolism, pH, vascularity, oxygenation, and extracellular matrix components, including tumor-associated macrophages, and sodium concentration. CONCLUSION Multiparametric MRI is capable of noninvasively assessing the pathophysiological features and tumor-supportive niches of the TME, which is in line with its application in personalized medicine.
Collapse
Affiliation(s)
- Fateme Shahedi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (F.S., S.N., M.M., H.Z.)
| | - Shahrokh Naseri
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (F.S., S.N., M.M., H.Z.)
| | - Mahdi Momennezhad
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (F.S., S.N., M.M., H.Z.)
| | - Hoda Zare
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran (F.S., S.N., M.M., H.Z.); Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran (H.Z.).
| |
Collapse
|
2
|
Fang Z, Shu T, Luo P, Shao Y, Lin L, Tu Z, Zhu X, Wu L. The peritumoral edema index and related mechanisms influence the prognosis of GBM patients. Front Oncol 2024; 14:1417208. [PMID: 39534094 PMCID: PMC11554619 DOI: 10.3389/fonc.2024.1417208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background Peritumoral brain edema (PTBE) represents a characteristic phenotype of intracranial gliomas. However, there is a lack of consensus regarding the prognosis and mechanism of PTBE. In this study, clinical imaging data, along with publicly available imaging data, were utilized to assess the prognosis of PTBE in glioblastoma (GBM) patients, and the associated mechanisms were preliminarily analyzed. Methods We investigated relevant imaging features, including edema, in GBM patients using ITK-SNAP imaging segmentation software. Risk factors affecting progression-free survival (PFS) and overall survival (OS) were assessed using a Cox proportional hazard regression model. In addition, the impact of PTBE on PFS and OS was analyzed in clinical GBM patients using the Kaplan-Meier survival analysis method, and the results further validated by combining data from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA). Finally, functional enrichment analysis based on TCIA and TCGA datasets identified several pathways potentially involved in the mechanism of edema formation. Results This study included a total of 32 clinical GBM patients and 132 GBM patients from public databases. Univariate and multivariate analyses indicated that age and edema index (EI) are independent risk factors for PFS, but not for OS. Kaplan-Meier curves revealed consistent survival analysis results between IE groups among both clinical patients and TCIA and TCGA patients, suggesting a significant effect of PTBE on PFS but not on OS. Furthermore, functional enrichment analysis predicted the involvement of several pathways related mainly to cellular bioenergetics and vasculogenic processes in the mechanism of PTBE formation. While these novel results warrant confirmation in a larger patient cohort, they support good prognostic value for PTBE assessment in GBM. Conclusions Our results indicate that a low EI positively impacts disease control in GBM patients, but this does not entirely translate into an improvement in OS. Multiple genes, signaling pathways, and biological processes may contribute to the formation of peritumoral edema in GBM through cytotoxic and vascular mechanisms.
Collapse
Affiliation(s)
- Zhansheng Fang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Ting Shu
- Department of Medical Imaging Center, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengxiang Luo
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Yiqing Shao
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Li Lin
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Zewei Tu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Xingen Zhu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Lei Wu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang University, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang University, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Li J, Sun W, Hu S, Yan X. The Implication of Photodynamic Therapy Applied to the Level of Tumor Resection on Postoperative Cerebral Edema and Intracranial Pressure Changes in Gliomas. Lasers Surg Med 2024; 56:709-722. [PMID: 39256928 DOI: 10.1002/lsm.23837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
AIM The aim of our study was to explore the factors influencing cerebral edema and intracranial pressure in glioblastoma multiforme (GBM) patients who undergo photodynamic therapy (PDT) after resection. APPROACH This was a retrospective controlled study of GBM patients treated with PDT-assisted resections of varying scope from May 2021 to August 2023. The baseline clinical data, cerebral edema volumes, intracranial pressure values, and imaging data of the GBM patients were collected for statistical analysis. RESULTS A total of 56 GBM patients were included. Thirty of the patients underwent gross total resection (GTR), and the other 26 patients underwent subtotal resection (STR). We found that the cerebral edema volume and the mean intracranial pressure in patients who underwent GTR were lower than those in patients who underwent STR. Moreover, univariate analysis showed that the scope of tumor resection was an independent factor affecting cerebral edema and intracranial pressure after PDT. CONCLUSIONS Compared with STR, PDT combined with GTR significantly reduced postoperative brain edema volume and intracranial pressure in GBM patients.
Collapse
Affiliation(s)
- Jingxuan Li
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weijun Sun
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shaoshan Hu
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiuwei Yan
- Department of Neurosurgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Pons-Escoda A, Naval-Baudin P, Viveros M, Flores-Casaperalta S, Martinez-Zalacaín I, Plans G, Vidal N, Cos M, Majos C. DSC-PWI presurgical differentiation of grade 4 astrocytoma and glioblastoma in young adults: rCBV percentile analysis across enhancing and non-enhancing regions. Neuroradiology 2024; 66:1267-1277. [PMID: 38834877 PMCID: PMC11246293 DOI: 10.1007/s00234-024-03385-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE The presurgical discrimination of IDH-mutant astrocytoma grade 4 from IDH-wildtype glioblastoma is crucial for patient management, especially in younger adults, aiding in prognostic assessment, guiding molecular diagnostics and surgical planning, and identifying candidates for IDH-targeted trials. Despite its potential, the full capabilities of DSC-PWI remain underexplored. This research evaluates the differentiation ability of relative-cerebral-blood-volume (rCBV) percentile values for the enhancing and non-enhancing tumor regions compared to the more commonly used mean or maximum preselected rCBV values. METHODS This retrospective study, spanning 2016-2023, included patients under 55 years (age threshold based on World Health Organization recommendations) with grade 4 astrocytic tumors and known IDH status, who underwent presurgical MR with DSC-PWI. Enhancing and non-enhancing regions were 3D-segmented to calculate voxel-level rCBV, deriving mean, maximum, and percentile values. Statistical analyses were conducted using the Mann-Whitney U test and AUC-ROC. RESULTS The cohort consisted of 59 patients (mean age 46; 34 male): 11 astrocytoma-4 and 48 glioblastoma. While glioblastoma showed higher rCBV in enhancing regions, the differences were not significant. However, non-enhancing astrocytoma-4 regions displayed notably higher rCBV, particularly in lower percentiles. The 30th rCBV percentile for non-enhancing regions was 0.705 in astrocytoma-4, compared to 0.458 in glioblastoma (p = 0.001, AUC-ROC = 0.811), outperforming standard mean and maximum values. CONCLUSION Employing an automated percentile-based approach for rCBV selection enhances differentiation capabilities, with non-enhancing regions providing more insightful data. Elevated rCBV in lower percentiles of non-enhancing astrocytoma-4 is the most distinguishable characteristic and may indicate lowly vascularized infiltrated edema, contrasting with glioblastoma's pure edema.
Collapse
Affiliation(s)
- Albert Pons-Escoda
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain.
- Neuro-oncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain.
- Facultat de Medicina i Ciències de La Salut, Universitat de Barcelona (UB), Barcelona, Spain.
| | - Pablo Naval-Baudin
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Facultat de Medicina i Ciències de La Salut, Universitat de Barcelona (UB), Barcelona, Spain
- Diagnostic Imaging and Nuclear Medicine Research Group, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain
| | - Mildred Viveros
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | | | - Ignacio Martinez-Zalacaín
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Diagnostic Imaging and Nuclear Medicine Research Group, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain
| | - Gerard Plans
- Neuro-oncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain
- Neurosurgery Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Noemi Vidal
- Neuro-oncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain
- Pathology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Monica Cos
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Carles Majos
- Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
- Neuro-oncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, Barcelona, Spain
| |
Collapse
|
5
|
Giambra M, Di Cristofori A, Valtorta S, Manfrellotti R, Bigiogera V, Basso G, Moresco RM, Giussani C, Bentivegna A. The peritumoral brain zone in glioblastoma: where we are and where we are going. J Neurosci Res 2023; 101:199-216. [PMID: 36300592 PMCID: PMC10091804 DOI: 10.1002/jnr.25134] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 10/01/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and invasive primary brain tumor. Current therapies are not curative, and patients' outcomes remain poor with an overall survival of 20.9 months after surgery. The typical growing pattern of GBM develops by infiltrating the surrounding apparent normal brain tissue within which the recurrence is expected to appear in the majority of cases. Thus, in the last decades, an increased interest has developed to investigate the cellular and molecular interactions between GBM and the peritumoral brain zone (PBZ) bordering the tumor tissue. The aim of this review is to provide up-to-date knowledge about the oncogenic properties of the PBZ to highlight possible druggable targets for more effective treatment of GBM by limiting the formation of recurrence, which is almost inevitable in the majority of patients. Starting from the description of the cellular components, passing through the illustration of the molecular profiles, we finally focused on more clinical aspects, represented by imaging and radiological details. The complete picture that emerges from this review could provide new input for future investigations aimed at identifying new effective strategies to eradicate this still incurable tumor.
Collapse
Affiliation(s)
- Martina Giambra
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Andrea Di Cristofori
- PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Silvia Valtorta
- Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - Roberto Manfrellotti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Vittorio Bigiogera
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Rosa Maria Moresco
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Nuclear Medicine, San Raffaele Scientific Institute, IRCCS, Milan, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
| | - Carlo Giussani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Division of Neurosurgery, Azienda Socio Sanitaria Territoriale - Monza, Ospedale San Gerardo, Monza, Italy
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
6
|
Muacevic A, Adler JR, Liang HK, Nakai K, Sumiya T, Iizumi T, Kohzuki H, Numajiri H, Makishima H, Tsurubuchi T, Matsuda M, Ishikawa E, Sakurai H. Factors Involved in Preoperative Edema in High-Grade Gliomas. Cureus 2022; 14:e31379. [PMID: 36514578 PMCID: PMC9741940 DOI: 10.7759/cureus.31379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background Expansion of preoperative edema (PE) is an independent poor prognostic factor in high-grade gliomas. Evaluation of PE provides important information that can be readily obtained from magnetic resonance imaging (MRI), but there are few reports on factors associated with PE. The goal of this study was to identify factors contributing to PE in Grade 3 (G3) and Grade 4 (G4) gliomas. Methodology PE was measured in 141 pathologically proven G3 and G4 gliomas, and factors with a potential relationship with PE were examined in univariate and multivariate analyses. The following eight explanatory variables were used: age, sex, Karnofsky performance status (KPS), location of the glioma, tumor diameter, pathological grade, isocitrate dehydrogenase (IDH)-1-R132H status, and Ki-67 index. Overall survival (OS) and progression-free survival (PFS) were calculated in groups divided by PE (<1 vs. ≥1 cm) and by factors with a significant correlation with PE in multivariate analysis. Results In univariate analysis, age (p = 0.013), KPS (p = 0.012), pathology grade (p = 0.004), and IDH1-R132H status (p = 0.0003) were significantly correlated with PE. In multivariate analysis, only IDH1-R132H status showed a significant correlation (p = 0.036), with a regression coefficient of -0.42. The median follow-up period in survivors was 38.9 months (range: 1.2-131.7 months). The one-, two-, and three-year OS rates for PE <1 vs. ≥1 cm were 77% vs. 68%, 67% vs. 44%, and 63% vs. 24% (p = 0.0001), respectively, and those for IDH1-R132H mutated vs. wild-type cases were 85% vs. 67%, 85% vs. 40%, and 81% vs. 21% (p < 0.0001), respectively. The one-, two-, and three-year PFS rates for PE <1 vs. ≥1 cm were 77% vs. 49%, 64% vs. 24%, and 50% vs. 18% (p = 0.0002), respectively, and those for IDH1-R132H mutated vs. wild-type cases were 85% vs. 48%, 77% vs. 23%, and 73% vs. 14% (p < 0.0001), respectively. Conclusions IDH1-R132H status was found to be a significant contributor to PE. Cases with PE <1 cm and those with the IDH1-R132H mutation clearly had a better prognosis.
Collapse
|
7
|
Ohno M, Kitano S, Satomi K, Yoshida A, Miyakita Y, Takahashi M, Yanagisawa S, Tamura Y, Ichimura K, Narita Y. Assessment of radiographic and prognostic characteristics of programmed death-ligand 1 expression in high-grade gliomas. J Neurooncol 2022; 160:463-472. [DOI: 10.1007/s11060-022-04165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
|
8
|
Bailo M, Pecco N, Callea M, Scifo P, Gagliardi F, Presotto L, Bettinardi V, Fallanca F, Mapelli P, Gianolli L, Doglioni C, Anzalone N, Picchio M, Mortini P, Falini A, Castellano A. Decoding the Heterogeneity of Malignant Gliomas by PET and MRI for Spatial Habitat Analysis of Hypoxia, Perfusion, and Diffusion Imaging: A Preliminary Study. Front Neurosci 2022; 16:885291. [PMID: 35911979 PMCID: PMC9326318 DOI: 10.3389/fnins.2022.885291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTumor heterogeneity poses major clinical challenges in high-grade gliomas (HGGs). Quantitative radiomic analysis with spatial tumor habitat clustering represents an innovative, non-invasive approach to represent and quantify tumor microenvironment heterogeneity. To date, habitat imaging has been applied mainly on conventional magnetic resonance imaging (MRI), although virtually extendible to any imaging modality, including advanced MRI techniques such as perfusion and diffusion MRI as well as positron emission tomography (PET) imaging.ObjectivesThis study aims to evaluate an innovative PET and MRI approach for assessing hypoxia, perfusion, and tissue diffusion in HGGs and derive a combined map for clustering of intra-tumor heterogeneity.Materials and MethodsSeventeen patients harboring HGGs underwent a pre-operative acquisition of MR perfusion (PWI), Diffusion (dMRI) and 18F-labeled fluoroazomycinarabinoside (18F-FAZA) PET imaging to evaluate tumor vascularization, cellularity, and hypoxia, respectively. Tumor volumes were segmented on fluid-attenuated inversion recovery (FLAIR) and T1 post-contrast images, and voxel-wise clustering of each quantitative imaging map identified eight combined PET and physiologic MRI habitats. Habitats’ spatial distribution, quantitative features and histopathological characteristics were analyzed.ResultsA highly reproducible distribution pattern of the clusters was observed among different cases, particularly with respect to morphological landmarks as the necrotic core, contrast-enhancing vital tumor, and peritumoral infiltration and edema, providing valuable supplementary information to conventional imaging. A preliminary analysis, performed on stereotactic bioptic samples where exact intracranial coordinates were available, identified a reliable correlation between the expected microenvironment of the different spatial habitats and the actual histopathological features. A trend toward a higher representation of the most aggressive clusters in WHO (World Health Organization) grade IV compared to WHO III was observed.ConclusionPreliminary findings demonstrated high reproducibility of the PET and MRI hypoxia, perfusion, and tissue diffusion spatial habitat maps and correlation with disease-specific histopathological features.
Collapse
Affiliation(s)
- Michele Bailo
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Nicolò Pecco
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Paola Scifo
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luca Presotto
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Federico Fallanca
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Mapelli
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Luigi Gianolli
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Nicoletta Anzalone
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria Picchio
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Pietro Mortini
- Vita-Salute San Raffaele University, Milan, Italy
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Falini
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antonella Castellano
- Vita-Salute San Raffaele University, Milan, Italy
- Neuroradiology Unit and CERMAC, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Antonella Castellano,
| |
Collapse
|