1
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
2
|
Cao S, Hu X, Ren S, Wang Y, Shao Y, Wu K, Yang Z, Yang W, He G, Li X. The biological role and immunotherapy of gangliosides and GD3 synthase in cancers. Front Cell Dev Biol 2023; 11:1076862. [PMID: 36824365 PMCID: PMC9941352 DOI: 10.3389/fcell.2023.1076862] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Gangliosides are a large subfamily of glycosphingolipids that broadly exist in the nervous system and interact with signaling molecules in the lipid rafts. GD3 and GD2 are two types of disialogangliosides (GDs) that include two sialic acid residues. The expression of GD3 and GD2 in various cancers is mostly upregulated and is involved in tumor proliferation, invasion, metastasis, and immune responses. GD3 synthase (GD3S, ST8SiaI), a subclass of sialyltransferases, regulates the biosynthesis of GD3 and GD2. GD3S is also upregulated in most tumors and plays an important role in the development and progression of tumors. Many clinical trials targeting GD2 are ongoing and various immunotherapy studies targeting gangliosides and GD3S are gradually attracting much interest and attention. This review summarizes the function, molecular mechanisms, and ongoing clinical applications of GD3, GD2, and GD3S in abundant types of tumors, which aims to provide novel targets for future cancer therapy.
Collapse
Affiliation(s)
- Shangqi Cao
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Xu Hu
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Shangqing Ren
- 2Robotic Minimally Invasive Surgery Center, Sichuan Academy of Medical Sciences and Sichuan Provincial Peoples Hospital, Chengdu, China
| | - Yaohui Wang
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yanxiang Shao
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Kan Wu
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Zhen Yang
- 3Department of Urology, Chengdu Second People’s Hospital, Chengdu, China
| | - Weixiao Yang
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Gu He
- 4State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China,*Correspondence: Gu He, ; Xiang Li,
| | - Xiang Li
- 1Department of Urology, Institute of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China,*Correspondence: Gu He, ; Xiang Li,
| |
Collapse
|
3
|
Hu X, Yang Y, Wang Y, Ren S, Li X. Identifying an Immune-Related Gene ST8SIA1 as a Novel Target in Patients With Clear-Cell Renal Cell Carcinoma. Front Pharmacol 2022; 13:901518. [PMID: 35873547 PMCID: PMC9300832 DOI: 10.3389/fphar.2022.901518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Clear-cell renal cell carcinoma (ccRCC) is one of the most common urological cancers. The tumor microenvironment plays an important role in tumor development. The present study was conducted to identify novel immune-related biomarkers. The differentially expressed genes were identified using the ESTIMATE algorithm base on GEO and TCGA databases. The Kaplan–Meier survival curve and univariate and multivariate analyses were performed. The association between ST8SIA1 and the immune system was explored. The gene set enrichment analysis (GSEA) and online databases were used for functional annotation. ST8SIA1 was identified as a potential prognostic gene. Elevated ST8SIA1 was observed in the tumor tissues compared with adjacent normal tissues and associated with higher T stage and advanced TNM stage (all p < 0.05). The mRNA and protein levels of ST8SIA1 in cancer tissues and cells are also upregulated. The Kaplan–Meier survival curve and univariate and multivariate analyses showed that higher expression of ST8SIA1 was associated with worse OS (all p < 0.05). ST8SIA1 expression levels were negatively correlated with tumor purity and positively associated with infiltrated immune cells and expression of immune checkpoint genes. Function analysis also revealed that ST8SIA1 was significantly associated with immune-related pathways. In conclusion, ST8SIA1 was identified as an immune-related gene and a potential target in ccRCC patients. Further relevant studies are required to validate our findings.
Collapse
Affiliation(s)
- Xu Hu
- Institute of Urology, Department of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yanfei Yang
- The Third Xiangya Hospital of Central South Hospital, Changsha, China
| | - Yaohui Wang
- Institute of Urology, Department of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Shangqing Ren
- Institute of Urology, Department of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- Robot Minimally Invasive Center, Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Shangqing Ren, ; Xiang Li,
| | - Xiang Li
- Institute of Urology, Department of Urology, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
- *Correspondence: Shangqing Ren, ; Xiang Li,
| |
Collapse
|
4
|
Pherez-Farah A, López-Sánchez RDC, Villela-Martínez LM, Ortiz-López R, Beltrán BE, Hernández-Hernández JA. Sphingolipids and Lymphomas: A Double-Edged Sword. Cancers (Basel) 2022; 14:2051. [PMID: 35565181 PMCID: PMC9104519 DOI: 10.3390/cancers14092051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/14/2022] [Indexed: 11/24/2022] Open
Abstract
Lymphomas are a highly heterogeneous group of hematological neoplasms. Given their ethiopathogenic complexity, their classification and management can become difficult tasks; therefore, new approaches are continuously being sought. Metabolic reprogramming at the lipid level is a hot topic in cancer research, and sphingolipidomics has gained particular focus in this area due to the bioactive nature of molecules such as sphingoid bases, sphingosine-1-phosphate, ceramides, sphingomyelin, cerebrosides, globosides, and gangliosides. Sphingolipid metabolism has become especially exciting because they are involved in virtually every cellular process through an extremely intricate metabolic web; in fact, no two sphingolipids share the same fate. Unsurprisingly, a disruption at this level is a recurrent mechanism in lymphomagenesis, dissemination, and chemoresistance, which means potential biomarkers and therapeutical targets might be hiding within these pathways. Many comprehensive reviews describing their role in cancer exist, but because most research has been conducted in solid malignancies, evidence in lymphomagenesis is somewhat limited. In this review, we summarize key aspects of sphingolipid biochemistry and discuss their known impact in cancer biology, with a particular focus on lymphomas and possible therapeutical strategies against them.
Collapse
Affiliation(s)
- Alfredo Pherez-Farah
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico
| | | | - Luis Mario Villela-Martínez
- Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Rosales 80030, Sinaloa, Mexico
- Hospital Fernando Ocaranza, ISSSTE, Hermosillo 83190, Sonora, Mexico
- Centro Médico Dr. Ignacio Chávez, ISSSTESON, Hermosillo 83000, Sonora, Mexico
| | - Rocío Ortiz-López
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Nuevo Leon, Mexico
| | - Brady E Beltrán
- Hospital Edgardo Rebagliati Martins, Lima 15072, Peru
- Instituto de Investigaciones en Ciencias Biomédicas, Universidad Ricardo Palma, Lima 1801, Peru
| | | |
Collapse
|
5
|
Malignant and Benign T Cells Constituting Cutaneous T-Cell Lymphoma. Int J Mol Sci 2021; 22:ijms222312933. [PMID: 34884736 PMCID: PMC8657644 DOI: 10.3390/ijms222312933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of non-Hodgkin lymphoma, including various clinical manifestations, such as mycosis fungoides (MF) and Sézary syndrome (SS). CTCL mostly develops from CD4 T cells with the skin-tropic memory phenotype. Malignant T cells in MF lesions show the phenotype of skin resident memory T cells (TRM), which reside in the peripheral tissues for long periods and do not recirculate. On the other hand, malignant T cells in SS represent the phenotype of central memory T cells (TCM), which are characterized by recirculation to and from the blood and lymphoid tissues. The kinetics and the functional characteristics of malignant cells in CTCL are still unclear due, in part, to the fact that both the malignant cells and the T cells exerting anti-tumor activity possess the same characteristics as T cells. Capturing the features of both the malignant and the benign T cells is necessary for understanding the pathogenesis of CTCL and would lead to new therapeutic strategies specifically targeting the skin malignant T cells or benign T cells.
Collapse
|