1
|
Liu LK, Jian JT, Jing SS, Gao RL, Chi XD, Tian G, Liu HP. The crustacean DNA virus tegument protein VP26 binds to SNAP29 to inhibit SNARE complex assembly and autophagic degradation. J Virol 2024; 98:e0140823. [PMID: 38189252 PMCID: PMC10878264 DOI: 10.1128/jvi.01408-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Autophagy generally functions as a cellular surveillance mechanism to combat invading viruses, but viruses have evolved various strategies to block autophagic degradation and even subvert it to promote viral propagation. White spot syndrome virus (WSSV) is the most highly pathogenic crustacean virus, but little is currently known about whether crustacean viruses such as WSSV can subvert autophagic degradation for escape. Here, we show that even though WSSV proliferation triggers the accumulation of autophagosomes, autophagic degradation is blocked in the crustacean species red claw crayfish. Interestingly, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex including CqSNAP29, CqVAMP7, and the novel autophagosome SNARE protein CqSyx12 is required for autophagic flux to restrict WSSV replication, as revealed by gene silencing experiments. Simultaneously, the expressed WSSV tegument protein VP26, which likely localizes on autophagic membrane mediated by its transmembrane region, binds the Qb-SNARE domain of CqSNAP29 to competitively inhibit the binding of CqSyx12-Qa-SNARE with CqSNAP29-Qb-SNARE; this in turn disrupts the assembly of the CqSyx12-SNAP29-VAMP7 SNARE complex, which is indispensable for the proposed fusion of autophagosomes and lysosomes. Consequently, the autophagic degradation of WSSV is likely suppressed by the expressed VP26 protein in vivo in crayfish, thus probably protecting WSSV components from degradation via the autophagosome-lysosome pathway, resulting in evasion by WSSV. Collectively, these findings highlight how a DNA virus can subvert autophagic degradation by impairing the assembly of the SNARE complex to achieve evasion, paving the way for understanding host-DNA virus interactions from an evolutionary point of view, from crustaceans to mammals.IMPORTANCEWhite spot syndrome virus (WSSV) is one of the largest animal DNA viruses in terms of its genome size and has caused huge economic losses in the farming of crustaceans such as shrimp and crayfish. Detailed knowledge of WSSV-host interactions is still lacking, particularly regarding viral escape from host immune clearance. Intriguingly, we found that the presence of WSSV-VP26 might inhibit the autophagic degradation of WSSV in vivo in the crustacean species red claw crayfish. Importantly, this study is the first to show that viral protein VP26 functions as a core factor to benefit WSSV escape by disrupting the assembly of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which is necessary for the proposed fusion of autophagosomes with lysosomes for subsequent degradation. These findings highlight a novel mechanism of DNA virus evasion by blocking SNARE complex assembly and identify viral VP26 as a key candidate for anti-WSSV targeting.
Collapse
Affiliation(s)
- Ling-Ke Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiu-Ting Jian
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Shan-Shan Jing
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Rui-Lin Gao
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao-Dong Chi
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Geng Tian
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Hai-Peng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, China
| |
Collapse
|
2
|
Saha B, McNinch CM, Lu S, Ho MCW, De Carvalho SS, Barillas-Mury C. In-depth transcriptomic analysis of Anopheles gambiae hemocytes uncovers novel genes and the oenocytoid developmental lineage. BMC Genomics 2024; 25:80. [PMID: 38243165 PMCID: PMC10799387 DOI: 10.1186/s12864-024-09986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Hemocytes are immune cells that patrol the mosquito hemocoel and mediate critical cellular defense responses against pathogens. However, despite their importance, a comprehensive transcriptome of these cells was lacking because they constitute a very small fraction of the total cells in the insect, limiting the study of hemocyte differentiation and immune function. RESULTS In this study, an in-depth hemocyte transcriptome was built by extensive bulk RNA sequencing and assembly of hemocyte RNAs from adult A. gambiae female mosquitoes, based on approximately 2.4 billion short Illumina and about 9.4 million long PacBio high-quality reads that mapped to the A. gambiae PEST genome (P4.14 version). A total of 34,939 transcripts were annotated including 4,020 transcripts from novel genes and 20,008 novel isoforms that result from extensive differential splicing of transcripts from previously annotated genes. Most hemocyte transcripts identified (89.8%) are protein-coding while 10.2% are non-coding RNAs. The number of transcripts identified in the novel hemocyte transcriptome is twice the number in the current annotation of the A. gambiae genome (P4.14 version). Furthermore, we were able to refine the analysis of a previously published single-cell transcriptome (scRNAseq) data set by using the novel hemocyte transcriptome as a reference to re-define the hemocyte clusters and determine the path of hemocyte differentiation. Unsupervised pseudo-temporal ordering using the Tools for Single Cell Analysis software uncovered a novel putative prohemocyte precursor cell type that gives rise to prohemocytes. Pseudo-temporal ordering with the Monocle 3 software, which analyses changes in gene expression during dynamic biological processes, determined that oenocytoids derive from prohemocytes, a cell population that also gives rise to the granulocyte lineage. CONCLUSION A high number of mRNA splice variants are expressed in hemocytes, and they may account for the plasticity required to mount efficient responses to many different pathogens. This study highlights the importance of a comprehensive set of reference transcripts to perform robust single-cell transcriptomic data analysis of cells present in low abundance. The detailed annotation of the hemocyte transcriptome will uncover new facets of hemocyte development and function in adult dipterans and is a valuable community resource for future studies on mosquito cellular immunity.
Collapse
Affiliation(s)
- Banhisikha Saha
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Colton M McNinch
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, 20892, Bethesda, MD, USA
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Margaret C W Ho
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, 20892, Bethesda, MD, USA
| | - Stephanie Serafim De Carvalho
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA.
| |
Collapse
|
3
|
Sun M, Li S, Jin S, Li X, Xiang J, Li F. A Novel TRIM9 Protein Promotes NF-κB Activation Through Interacting With LvIMD in Shrimp During WSSV Infection. Front Immunol 2022; 13:819881. [PMID: 35281067 PMCID: PMC8904877 DOI: 10.3389/fimmu.2022.819881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
The TRIpartite Motif (TRIM) proteins play key roles in cell differentiation, apoptosis, development, autophagy, and innate immunity in vertebrates. In the present study, a novel TRIM9 homolog (designated as LvTRIM9-1) specifically expressed in the lymphoid organ of shrimp was identified from the Pacific whiteleg shrimp Litopenaeus vannamei. Its deduced amino acid sequence possesses the typical features of TRIM proteins, including a RING domain, two B-boxes, a coiled-coil domain, a FN3 domain, and a SPRY domain. The transcripts of LvTRIM9-1 were mainly located in the lymphoid tubules of the lymphoid organ. Knockdown of LvTRIM9-1 could apparently inhibit the transcriptions of some genes from white spot syndrome virus (WSSV) and reduce the viral propagation in the lymphoid organ. Overexpression of LvTRIM9-1 in mammalian cells could activate the promoter activity of NF-κB, and an in vivo experiment in shrimp showed that knockdown of LvTRIM9-1 reduced the expression of LvRelish in the lymphoid organ. Yeast two-hybridization and co-immunoprecipitation (Co-IP) assays confirmed that LvTRIM9-1 could directly interact with LvIMD, a key component of the IMD pathway, through its SPRY domain. These data suggest that LvTRIM9-1 could activate the IMD pathway in shrimp via interaction with LvIMD. This is the first evidence to show the regulation of a TRIM9 protein on the IMD pathway through its direct interaction with IMD, which will enrich our knowledge on the role of TRIM proteins in innate immunity of invertebrates.
Collapse
Affiliation(s)
- Mingzhe Sun
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Songjun Jin
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xuechun Li
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhai Xiang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|