1
|
Ryu T, Yoshino M, Tse WKF, Ansai S, Iguchi T, Kumar A, Somamoto T, Nakao M, Ogino Y. Local immune response induced by intra-fin antigen injection in Japanese medaka (Oryzias latipes) is a useful model for immunological studies. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 165:105344. [PMID: 39961406 DOI: 10.1016/j.dci.2025.105344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Teleost fishes play a pivotal role in advancing our understanding of immune system evolution because they retain the ancient characteristics of vertebrate immunity, encompassing both innate and adaptive immune systems. Among these, innate immunity plays a critical role in fish as the first line of defense, coordinating rapid responses to pathogen infections. However, the lack of fish-specific immunological methodologies has limited progress in elucidating fish immune mechanisms. To better understand how the innate immune response develops and resolves in fish, detailed observation and integrative analysis of leukocytes at multiple time points is necessary. In the present study, an intra-fin injection method for observing local immune responses in Japanese medaka (Oryzias latipes) was tested and optimized to analyze the progression of zymosan-induced innate immune responses. Zymosan-injected medaka showed a rapid immune response characterized by leukocyte recruitment and phagocytosis. Using TG(FmpxP:mCherry) transgenic medaka with mCherry fluorescence driven by myeloperoxidase (mpx) promoter, granulocyte chemotaxis towards the site of zymosan entry was successfully visualized. The rapid increase in tumor necrosis factor α (tnfa), interleukin-1β (il1b), interleukin-6 (il6), and CXC motif chemokine ligand 8 (cxcl8) expressions in zymosan-injected anal fins provided a molecular basis for the visualized tissue-specific cellular response. Our study underscores the dynamic orchestration of immune components during the innate immune response in Japanese medaka and highlights their potential as a promising model for immunological research.
Collapse
Affiliation(s)
- Tsukasa Ryu
- Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Marine Biochemistry, Kyushu University, Fukuoka, 819-0395, Japan
| | - Mizuki Yoshino
- Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Marine Biology, Kyushu University, Fukuoka, 819-0395, Japan
| | - William Ka Fai Tse
- Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Developmental Disorders and Toxicology, Kyushu University, Fukuoka, 819-0395, Japan; Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Satoshi Ansai
- Ushimado Marine Institute, Faculty of Science, Okayama University, Ushimado, Setouchi, Okayama, 701-4303, Japan
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organisation, CSIRO Environment, 40 Waite Road, Gate 4 Reception, Urrbrae, 5064, South Australia, Australia
| | - Tomonori Somamoto
- Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Marine Biochemistry, Kyushu University, Fukuoka, 819-0395, Japan
| | - Miki Nakao
- Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Marine Biochemistry, Kyushu University, Fukuoka, 819-0395, Japan; Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yukiko Ogino
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan; Graduate School of Bioresource and Bioenvironmental Sciences, Laboratory of Aquatic Molecular Developmental Biology, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
2
|
Secombes CJ. Cytokines - Early vertebrate genes and evolution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 160:105239. [PMID: 39117166 DOI: 10.1016/j.dci.2024.105239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
|
3
|
Yu D, Yang G, Mo J, Zhang M, Xia H, Gan Z, Lu Y. Identification and functional characterization of interleukin-22 (IL-22) in orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2024; 150:109598. [PMID: 38697375 DOI: 10.1016/j.fsi.2024.109598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
In mammals, IL-22 is considered as a critical cytokine regulating of immunity and homeostasis at barrier surfaces. Although IL-22 have been functional characterization in different species of fish, the studies about distinct responses of IL-22 in different organs/tissues/cell types is rather limited. Here, we identified and cloned IL-22 gene (named as Ec-IL-22) from grouper (Epinephelus coioides). Ec-IL-22 gene was detected in all orangs/tissues examined, and was induced in intestine, gill, spleen, head kidney, and primary head kidney/intestine leukocytes following the stimulation of LPS and poly (I:C), as well as Vibrio harveyi and Singapore grouper iridovirus infection (SGIV). In addition, the stimulation of DSS could induce the expression of Ec-IL-22 in intestine and primary leukocytes from intestine. Importantly, the treatment of recombinant Ec-IL-22 induced the mRNA level of proinflammatory cytokines in primary intestine/head kidney leukocytes. The present results improve the understanding of expression patterns and functional characteristics of fish IL-22 in different organs/tissues/cell types.
Collapse
Affiliation(s)
- Dapeng Yu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Guanjian Yang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Jingyi Mo
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Meiling Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Hongli Xia
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Zhen Gan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| |
Collapse
|
4
|
Fang YD, Xie F, Zhang WD, Zeng WW, Lu J, Cheng YJ, Wang WH. Age-dependent distribution of IgA and IgG antibody-secreting cells in the pharyngeal tonsil of the Bactrian camel. Vet J 2024; 305:106131. [PMID: 38763403 DOI: 10.1016/j.tvjl.2024.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
The pharyngeal tonsil, located in the nasopharynx, can effectively defend against pathogens invading the body from the upper respiratory tract and play a crucial role in mucosal immunity of the respiratory tract. Immunoglobulin A (IgA) and Immunoglobulin G (IgG) serve as key effector molecules in mucosal immunity, exhibiting multiple immune functions. This study aimed to investigate the distribution patterns and age-related alterations of IgA and IgG antibody-secreting cells (ASCs) in the pharyngeal tonsils of Bactrian camels. Twelve Alashan Bactrian camels were categorized into four age groups: young (1-2 years, n=3), pubertal (3-5 years, n=3), middle-aged (6-16 years, n=3) and old (17-20 years, n=3). The distribution patterns of IgA and IgG ASCs in the pharyngeal tonsils of Bactrian camels of different ages were meticulously observed, analyzed and compared using immunohistochemical and statistical methods. The results revealed that IgA ASCs in the pharyngeal tonsils of all age groups were primarily clustered or diffusely distributed in the reticular epithelium and its subepithelial regions (region A) and around the glands (region C), scattered in the subepithelial regions of non-reticular epithelium (region B), and sporadically distributed in the interfollicular regions (region D). Interestingly, the distribution pattern of IgG ASCs in the pharyngeal tonsils closely mirrored that of IgA ASCs. The distribution densities of IgA and IgG ASCs in these four regions were significantly decreased in turn (P<0.05). However, IgA ASCs exhibited significantly higher densities than IgG ASCs in the same region (P<0.05). Age-related alterations indicated that the distribution densities of IgA and IgG ASCs in each region of the pharyngeal tonsils exhibited a trend of initially increasing and subsequently decreasing from young to old camels, reaching a peak in the pubertal group. As camels age, there was a significant decrease in the densities of IgA and IgG ASCs in all regions of the pharyngeal tonsils (P<0.05). The results demonstrate that the reticular epithelium and its subepithelial regions in the pharyngeal tonsils of Bactrian camels are the primary regions where IgA and IgG ASCs colonize and exert their immune functions. These regions play a pivotal role in inducing immune responses and defending against pathogen invasions in the pharyngeal tonsils. IgA ASCs may be the principal effector cells of the mucosal immune response in the pharyngeal tonsils of Bactrian camels. Aging significantly reduces the densities of IgA and IgG ASCs, while leaving their distribution patterns unaffected. These findings will provide valuable insights for further investigations into the immunomorphology, immunosenescence, and response mechanisms of the pharyngeal tonsils in Bactrian camels.
Collapse
Affiliation(s)
- Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Fei Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wang-Dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei-Wei Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jia Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yu-Jiao Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wen-Hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Sun X, Tian S, Yan S, Sun W, Miao J, Yue Y, Han S, Huang S, Xu N, Diao J, Zhou Z, Zhu W. Bifidobacterium mediate gut microbiota-remedied intestinal barrier damage caused by cyproconazole in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169556. [PMID: 38135070 DOI: 10.1016/j.scitotenv.2023.169556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
The widespread use of cyproconazole (CPZ) enhances food security but may pose potential risks to non-target organisms. Therefore, we applied Multi-omics techniques to reveal the response of the intestinal barrier to CPZ exposure and explore whether the Bifidobacterium intervention experiment can repair the damage. First, we found that exposure to CPZ at environmentally relevant concentrations led to intestinal injury phenotype, significantly down-regulated intestinal protein gene expression, and up-regulated pro-inflammatory gene expression, further causing intestinal dysbacteriosis and metabolic disorders. In particular, by combining analysis of gut microbiota and metabolites, we noticed acetate, a key metabolite, which decreased sharply after exposure to high concentration of CPZ. Expectedly, after supplementing with Bifidobacterium (a core bacterium that produces acetate), we noticed that the acetate content was quickly restored. Further, we also verified that the increase in acetate content after Bifidobacterium supplementation at least partially promoted IL-22 secretion, which in turn stimulated the secretion of β-defensins (zfbd-1, zfbd-2, zfbd-3), thereby repairing the intestinal damage. In conclusion, our work confirms the potential of Bifidobacterium to improve intestinal damage and metabolic dysbiosis caused by CPZ exposure. It provides directional recommendations for the application of probiotics to repair the toxicological risk of pesticide exposure.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Sen Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Wei Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Jiyan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yifan Yue
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shihang Han
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shiran Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Ning Xu
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinling Diao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Watanabe M, Okamura Y, Kono T, Sakai M, Hikima JI. Interleukin-22 induces immune-related gene expression in the gills of Japanese medaka Oryzias latipes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104916. [PMID: 37591365 DOI: 10.1016/j.dci.2023.104916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
The cytokine interleukin (IL)-22 has been identified in several fish species; however, its functional significance in the gills of these fish species remains unclear. In this study, we analyzed the expression of proinflammatory cytokines, antimicrobial peptides, and IL-22 binding protein in the gills of wild-type and IL-22-knockout (IL-22 KO) medaka under dextran sulfate sodium-induced inflammation. We also produced medaka recombinant IL-22 (rIL-22) and analyzed the expression of immune-related genes in rIL-22-stimulated primary cell cultures from gills. The il1b, il6, tnfa, and hamp genes were significantly upregulated in wild-type gills upon dextran sulfate sodium stimulation compared with the naïve state but not in IL-22 KO gills. il22bp transcripts were barely detectable in the IL-22 KO medaka gills. However, the expression of il1b, il6, hamp, and il22bp was upregulated in rIL-22-stimulated gill cell culture. These results suggest IL-22 could be involved in immune responses through inflammatory cytokine and antimicrobial peptide production in fish gills.
Collapse
Affiliation(s)
- Mika Watanabe
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Yo Okamura
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| |
Collapse
|
7
|
Wang Y, Wang W, Chen W, Liu Q, Zhang Y, Yang D. Characterization of ccl20a.3 and ccl20l as gene markers for Th17 cell in turbot. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109005. [PMID: 37604262 DOI: 10.1016/j.fsi.2023.109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/28/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
T-helper 17 lymphocytes (Th17) are the most common inflammatory cells identified in mammals. However, the identification of Th17 cells and the clarification of their function in teleost fish remain largely unknown. In this study, we took advantage of the single-cell RNA sequencing-based immune cell atlas that was identified in turbot (Scophthalmus maximus), and revealed two chemokine-related genes, ccl20a.3 and ccl20l, that were specifically expressed in Th17 cells. Moreover, through immuno-fluorescence analysis, we found that CCL20a.3 or CCL20l was co-expressed with the classical makers in Th17 cells, including IL17a/f1 and IL22. Furthermore, through a Th17 lineage-specific transcription factor RORc inhibitor GSK805 treatment, we found that the expression of ccl20a.3 and ccl20l was significantly impaired, compared with other T cell markers. Besides, we also found that ccl20a.3 and ccl20l exhibited the same dynamic response with the classical markers that were identified in Th17 cells during bacterial infection. Taken together, these results provide potential gene markers for better understanding of the dynamic immune responses of Th17 cells in teleost fish.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China
| | - Weijie Chen
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, Laboratory for Aquatic Animal Diseases, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
8
|
Han Z, Ge L, Wen S, Sun J. Dysfunction of the intestinal physical barrier in the intestinal inflammation of tongue sole, Cynoglossus semilaevis, induced by Shewanella algae infection. FISH & SHELLFISH IMMUNOLOGY 2023:108900. [PMID: 37315911 DOI: 10.1016/j.fsi.2023.108900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023]
Abstract
Bacterial intestinal inflammation occurs frequently in cultured fish. However, research on the dysfunction of the intestinal physical barrier in fish intestinal inflammation is scarce. In this study, intestinal inflammation in tongue sole Cynoglossus semilaevis was induced by Shewanella algae and the intestinal permeability was investigated. Gene expression patterns in inflammatory factors, tight junction molecules, and keratins 8 and 18 in the intestines were further explored. Histological examinations of the middle intestines showed that S. algae induced pathological lesions of intestinal inflammation and significantly increased the total number of mucous cells (p < 0.01). Ultrastructural observation in the middle intestines showed that intercellular spaces between epithelial cells were significantly wider in infected fish compared with the control (p < 0.01). The positive result of fluorescence in situ hybridization confirmed the presence of S. algae in the intestine. Enhanced Evans blue exudation and increased levels of serum d-lactate and intestinal fatty acid binding protein were suggestive of increased intestinal barrier permeability. The mRNA levels of four pro-inflammatory cytokines, namely IL-6, IL-8, IL-β, and TNF-α, were significantly increased after S. algae infection at most tested time points (p < 0.01 or p < 0.05), while there was an alternating increasing and decreasing trend in the gene expression patterns of IL-10, TGF-β, TLR-2, AP-1, and CASP-1. The mRNA expression of tight junction molecules (claudin-1, claudin-2, ZO-1, JAM-A, and MarvelD3) and keratins 8 and 18 in the intestines was significantly decreased at 6, 12, 24, 48, or 72 h post infection (p < 0.01 or p < 0.05). In conclusion, S. algae infection induced intestinal inflammation accompanied by increased intestinal permeability in tongue sole, and tight junction molecules and keratins were probably associated with the pathological process.
Collapse
Affiliation(s)
- Zhuoran Han
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Lunhua Ge
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Siyi Wen
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
9
|
Yu D, Yang G, Xia H, Gan Z, Wang Z, Xia L, Kwok KW, Cai J, Lu Y. Dextran Sulfate Sodium Salt (DSS) induced enteritis in Orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108742. [PMID: 37100309 DOI: 10.1016/j.fsi.2023.108742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/02/2023] [Accepted: 04/10/2023] [Indexed: 05/22/2023]
Abstract
The enteritis is a common disease in fish farming, but the pathogenesis is still not fully understood. The aim of the present study was to investigate the inducement of Dextran Sulfate Sodium Salt (DSS) intestinal inflammation on Orange-spotted grouper (Epinephelus coioides). The fish were challenged with 200 μl 3% DSS via oral irrigation and feeding, an appropriate dose based on the disease activity index of inflammation. The results indicated that the inflammatory responses induced by DSS were closely associated with the expression of pro-inflammatory cytokines including interleukin 1β (IL-1β), IL-8, IL16, IL-10 and tumor necrosis factor α (TNF-α), as well as NF-κB and myeloperoxidase (MPO) activity. At day5 after DSS treatment, the highest levels of all parameters were observed. Also, the severe intestinal lesions (intestinal villus fusion and shedding), strong inflammatory cell infiltration and microvillus effacement were seen through histological examination and SEM (scanning electronic microscopy) analysis. During the subsequent 18 days of the experimental period, the injured intestinal villi were gradually recovery. These data is beneficial to further investigate the pathogenesis of enteritis in farmed fish, which is helpful for the control of enteritis in aquaculture.
Collapse
Affiliation(s)
- Dapeng Yu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Guanjian Yang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Hongli Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zhiwen Wang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Liqun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Kevin Wh Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jia Cai
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| |
Collapse
|
10
|
Shi C, Su C, Cen L, Han L, Tang J, Wang Z, Shi X, Ju D, Cao Y, Zhu H. Vunakizumab-IL22, a Novel Fusion Protein, Promotes Intestinal Epithelial Repair and Protects against Gut Injury Induced by the Influenza Virus. Biomedicines 2023; 11:biomedicines11041160. [PMID: 37189778 DOI: 10.3390/biomedicines11041160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Secondary immune damage to the intestinal mucosa due to an influenza virus infection has gained the attention of investigators. The protection of the intestinal barrier is an effective means of improving the survival rate in cases of severe pneumonia. We developed a fusion protein, Vunakizumab-IL22(vmab-IL22), by combining an anti-IL17A antibody with IL22. Our previous study showed that Vunakizumab-IL22 repairs the pulmonary epithelial barrier in influenza virus-infected mice. In this study, we investigated the protective effects against enteritis given its anti-inflammatory and tissue repair functions. The number of goblet cells and the expression of zonula occludens protein 1(ZO-1), Mucin-2, Ki67 and IL-22R were determined by immunohistochemistry (IHC) and quantitative RT-PCR in influenza A virus (H1N1)-infected mice. The expression of NOD-like receptor pyrin domain containing 3 (NLRP3) and toll- like-receptor-4 (TLR4) was assayed by IHC in the lungs and intestine in HIN1 virus-induced mice to evaluate the whole efficacy of the protective effects on lungs and intestines. Consequently, Cytochrome C, phosphorylation of nuclear factor NF-kappaB (p-NF-κB), IL-1β, NLRP3 and Caspase 3 were assayed by Western blotting in dextran sulfate sodium salt (DSS)-treated mice. Treatment with Vunakizumab-IL22 improved the shortened colon length, macroscopic and microscopic morphology of the small intestine (p < 0.001) significantly, and strengthened the tight junction proteins, which was accompanied with the upregulated expression of IL22R. Meanwhile, Vunakizumab-mIL22 inhibited the expression of inflammation-related protein in a mouse model of enteritis induced by H1N1 and DSS. These findings provide new evidence for the treatment strategy for severe viral pneumonia involved in gut barrier protection. The results suggest that Vunakizumab-IL22 is a promising biopharmaceutical drug and is a candidate for the treatment of direct and indirect intestinal injuries, including those induced by the influenza virus and DSS.
Collapse
Affiliation(s)
- Chenchen Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Division of Spine, Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Chang Su
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201100, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai 201100, China
| | - Lifeng Cen
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lei Han
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Zetian Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yiou Cao
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai 201100, China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai 201100, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
11
|
Liao X, Lan Y, Wang W, Zhang J, Shao R, Yin Z, Gudmundsson GH, Bergman P, Mai K, Ai Q, Wan M. Vitamin D influences gut microbiota and acetate production in zebrafish ( Danio rerio) to promote intestinal immunity against invading pathogens. Gut Microbes 2023; 15:2187575. [PMID: 36879441 PMCID: PMC10012952 DOI: 10.1080/19490976.2023.2187575] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Although evidence has shown that vitamin D (VD) influences gut homeostasis, limited knowledge is available how VD regulates intestinal immunity against bacterial infection. In the present study, cyp2r1 mutant zebrafish, lacking the capacity to metabolize VD, and zebrafish fed a diet devoid of VD, were utilized as VD-deficient animal models. Our results confirmed that the expression of antimicrobial peptides (AMPs) and IL-22 was restrained and the susceptibility to bacterial infection was increased in VD-deficient zebrafish. Furthermore, VD induced AMP expression in zebrafish intestine by activating IL-22 signaling, which was dependent on the microbiota. Further analysis uncovered that the abundance of the acetate-producer Cetobacterium in VD-deficient zebrafish was reduced compared to WT fish. Unexpectedly, VD promoted the growth and acetate production of Cetobacterium somerae under culture in vitro. Importantly, acetate treatment rescued the suppressed expression of β-defensins in VD-deficient zebrafish. Finally, neutrophils contributed to VD-induced AMP expression in zebrafish. In conclusion, our study elucidated that VD modulated gut microbiota composition and production of short-chain fatty acids (SCFAs) in zebrafish intestine, leading to enhanced immunity.
Collapse
Affiliation(s)
- Xinmeng Liao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Yawen Lan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Wentao Wang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Jinjin Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gudmundur H. Gudmundsson
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- The Immunodeficiency Unit, Infectious Disease Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China
- Pilot National Laboratory of Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Okamura Y, Kono T, Sakai M, Hikima JI. Evolutional perspective and functional characteristics of interleukin-17 in teleosts. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108496. [PMID: 36526158 DOI: 10.1016/j.fsi.2022.108496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Interleukin (IL)-17 is a proinflammatory cytokine and plays essential roles in adaptive and innate immune responses against bacterial and fungal infections. Especially in mammalian mucosal tissues, it is well known that innate immune responses via IL-17A and IL-17F, such as the production of antimicrobial peptides, are very important for microbiota control. In contrast, interesting insights into the functions of IL-17 have recently been reported in several teleost species, although little research has been conducted on teleost IL-17. In the present review, we focused on current insights on teleost IL-17 and speculated on the different or consensus parts of teleost IL-17 signaling compared to that of mammals. This review focuses on the role of teleost IL-17 in intestinal immunity. We expect that this review will encourage a further understanding of the roles and importance of IL-17 signaling in teleosts.
Collapse
Affiliation(s)
- Yo Okamura
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Tomoya Kono
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Sakai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Jun-Ichi Hikima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
13
|
Zhang Y, Gu Y, Jiang J, Cui X, Cheng S, Liu L, Huang Z, Liao R, Zhao P, Yu J, Wang J, Jia Y, Jin W, Zhou F. Stigmasterol attenuates hepatic steatosis in rats by strengthening the intestinal barrier and improving bile acid metabolism. NPJ Sci Food 2022; 6:38. [PMID: 36030278 PMCID: PMC9420112 DOI: 10.1038/s41538-022-00156-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022] Open
Abstract
Stigmasterol (ST) has been shown to improve both lipid and bile acid (BA) metabolism. However, the mechanism(s) by which ST prevents dyslipidemia via BA metabolism, and the potential involvement of other regulatory mechanisms, remains unclear. Here, we found that ST treatment effectively alleviates lipid metabolism disorder induced by a high-fat diet (HFD). Moreover, we also show that fecal microbiota transplantation from ST-treated rats displays similar protective effects in rats fed on an HFD. Our data confirm that the gut microbiota plays a key role in attenuating HFD-induced fat deposition and metabolic disorders. In particular, ST reverses HFD-induced gut microbiota dysbiosis in rats by reducing the relative abundance of Erysipelotrichaceae and Allobaculum bacteria in the gut. In addition, ST treatment also modifies the serum and fecal BA metabolome profiles in rats, especially in CYP7A1 mediated BA metabolic pathways. Furthermore, chenodeoxycholic acid combined with ST improves the therapeutic effects in HFD-induced dyslipidemia and hepatic steatosis. In addition, this treatment strategy also alters BA metabolism profiles via the CYP7A1 pathway and gut microbiota. Taken together, ST exerts beneficial effects against HFD-induced hyperlipidemia and obesity with the underlying mechanism being partially related to both the reprogramming of the intestinal microbiota and metabolism of BAs in enterohepatic circulation. This study provides a theoretical basis for further study of the anti-obesity effects of ST and consideration of the gut microbiota as a potential target for the treatment of HFD-induced dyslipidemia.
Collapse
Affiliation(s)
- Yaxin Zhang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.,Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Yuyan Gu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaobing Cui
- Department of Cardiology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Saibo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Linling Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhiyong Huang
- Department of Otolaryngology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Rongxin Liao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Peng Zhao
- Center of TCM Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China
| | - Jieying Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jing Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Wen Jin
- Department of Cardiac Intensive Care Unit, Cardiovascular Hospital, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, 510317, China.
| | - Fenghua Zhou
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510315, China. .,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
14
|
Zhou J, Hou P, Yao Y, Yue J, Zhang Q, Yi L, Mi M. Dihydromyricetin Improves High-Fat Diet-Induced Hyperglycemia through ILC3 Activation via a SIRT3-Dependent Mechanism. Mol Nutr Food Res 2022; 66:e2101093. [PMID: 35635431 DOI: 10.1002/mnfr.202101093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/13/2022] [Indexed: 12/30/2022]
Abstract
SCOPE Previous studies indicate that dihydromyricetin (DHM) effectively improved glucose homeostasis and alleviated insulin resistance in population-intervened trials, yet the underlying mechanism remains obscure. METHODS AND RESULTS Wild-type male mice and recombinase activating gene 1(Rag1)-/- mice (lacking adaptive immunity lymphocytes) are fed with control, high-fat diet (HFD), or HFD+DHM diets for 8 weeks. DHM effectively protects HFD feeding mice against hyperglycemia by promoting group 3 innate lymphoid cells (ILC3s) cells proliferation and interleukin 22 (IL-22) production. Furthermore, IL-22 secretion induced by DHM increases the expression levels of the tight junction (TJs) molecules to protect the intestinal barrier integrity, thereby decreasing the level of lipopolysaccharides (LPS), an endotoxin that is involved in the regulation of chronic tissue inflammation and insulin resistance. In addition, silent mating-type information regulation 2 homolog 3 (SIRT3) deficiency results in more serious obesity and intestinal barrier damage following HFD feeding and abolished DHM-mediated increase in IL-22 expression levels of ILC3 cells in SIRT3 knockout (SIRT3KO) mice. DHM reduces metabolic stress and enhances mitochondrial respiratory capacity to promote cell proliferation and IL-22 secretion by activating SIRT3 in ILC3 cells CONCLUSIONS: DHM improves IL-22 production of ILC3 cells and subsequently inhibits intestinal barrier dysfunction to alleviate hyperglycemia partially mediated by SIRT3.
Collapse
Affiliation(s)
- Jie Zhou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Pengfei Hou
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Yu Yao
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Jing Yue
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Qianyong Zhang
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Mantian Mi
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing, 400038, P. R. China
| |
Collapse
|