1
|
Chalmers JD, Mall MA, Chotirmall SH, O'Donnell AE, Flume PA, Hasegawa N, Ringshausen FC, Watz H, Xu JF, Shteinberg M, McShane PJ. Targeting neutrophil serine proteases in bronchiectasis. Eur Respir J 2025; 65:2401050. [PMID: 39467608 DOI: 10.1183/13993003.01050-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
Persistent neutrophilic inflammation is a central feature in both the pathogenesis and progression of bronchiectasis. Neutrophils release neutrophil serine proteases (NSPs), such as neutrophil elastase (NE), cathepsin G and proteinase 3. When chronically high levels of free NSP activity exceed those of protective antiproteases, structural lung destruction, mucosal-related defects, further susceptibility to infection and worsening of clinical outcomes can occur. Despite the defined role of prolonged, high levels of NSPs in bronchiectasis, no drug that controls neutrophilic inflammation is licensed for the treatment of bronchiectasis. Previous methods of suppressing neutrophilic inflammation (such as direct inhibition of NE) have not been successful; however, an emerging therapy designed to address neutrophil-mediated pathology, inhibition of the cysteine protease cathepsin C (CatC, also known as dipeptidyl peptidase 1), is a promising approach to ameliorate neutrophilic inflammation, since this may reduce the activity of all NSPs implicated in bronchiectasis pathogenesis, and not just NE. Current data suggest that CatC inhibition may effectively restore the protease-antiprotease balance in bronchiectasis and improve disease outcomes as a result. Clinical trials for CatC inhibitors in bronchiectasis have reported positive phase III results. In this narrative review, we discuss the role of high NSP activity in bronchiectasis, and how this feature drives the associated morbidity and mortality seen in bronchiectasis. This review discusses therapeutic approaches aimed at treating neutrophilic inflammation in the bronchiectasis lung, summarising clinical trial outcomes and highlighting the need for more treatment strategies that effectively address chronic neutrophilic inflammation in bronchiectasis.
Collapse
Affiliation(s)
- James D Chalmers
- Division of Respiratory Medicine and Gastroenterology, University of Dundee, Dundee, UK
- J.D. Chalmers and M.A. Mall are joint first authors
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site Berlin, Berlin, Germany
- J.D. Chalmers and M.A. Mall are joint first authors
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | | | | | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Felix C Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Henrik Watz
- Velocity Clinical Research Grosshansdorf, formerly Pulmonary Research Institute at LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research Grosshansdorf (DZL), Grosshansdorf, Germany
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Michal Shteinberg
- Carmel Medical Center, Haifa, Israel
- The B. Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
- M. Shteinberg and P.J. McShane are joint senior authors
| | - Pamela J McShane
- University of Texas Health Science Center at Tyler, Tyler, TX, USA
- M. Shteinberg and P.J. McShane are joint senior authors
| |
Collapse
|
2
|
Kwon WY, Jung YS, Suh GJ, Kim SH, Lee A, Kim JY, Kim H, Park H, Shin J, Kim T, Kim KS, Itagaki K, Hauser CJ. Removal of circulating mitochondrial N-formyl peptides via immobilized antibody therapy restores sepsis-induced neutrophil dysfunction. J Leukoc Biol 2024; 116:1169-1183. [PMID: 39107254 DOI: 10.1093/jleuko/qiae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024] Open
Abstract
During recovery from septic shock, circulating mitochondrial N-formyl peptides predispose to secondary infection by occupying formyl peptide receptor 1 on the neutrophil (polymorphonuclear leukocyte) membrane, suppressing cytosolic calcium ([Ca2+]i)-dependent responses to secondarily encountered bacteria. However, no study has yet investigated therapeutic clearance of circulating mitochondrial N-formyl peptides in clinical settings. Thus, we studied how to remove mitochondrial N-formyl peptides from septic-shock plasma and whether such removal could preserve cell-surface formyl peptide receptor 1 and restore sepsis-induced polymorphonuclear leukocyte dysfunction by normalizing [Ca2+]i flux. In in vitro model systems, mitochondrial N-formyl peptide removal rescued polymorphonuclear leukocyte formyl peptide receptor 1-mediated [Ca2+]i flux and chemotaxis that had been suppressed by prior mitochondrial N-formyl peptide exposure. However, polymorphonuclear leukocyte functional recovery occurred in a stepwise fashion over 30 to 90 min. Intracellular Ca2+-calmodulin appears to contribute to this delay. In ex vivo model, systems using blood samples obtained from patients with septic shock, antimitochondrial N-formyl peptide antibodies alone failed to eliminate mitochondrial N-formyl peptides from septic-shock plasma or inhibit mitochondrial N-formyl peptide activity. We therefore created a beads-based antimitochondrial N-formyl peptide antibody cocktail by combining protein A/sepharose with antibodies specific for the most potent human mitochondrial N-formyl peptide chemoattractants. The beads-based antimitochondrial N-formyl peptide antibody cocktail treatment successfully removed those active mitochondrial N-formyl peptides from septic-shock plasma. Furthermore, the beads-based antimitochondrial N-formyl peptide antibody cocktail treatment significantly restored chemotactic and bactericidal dysfunction of polymorphonuclear leukocytes obtained from patients with septic shock who developed secondary infections. By clearing circulating mitochondrial N-formyl peptides, the immobilized antimitochondrial N-formyl peptide antibody therapy prevented mitochondrial N-formyl peptide interactions with surface formyl peptide receptor 1, thereby restoring [Ca2+]i-dependent polymorphonuclear leukocyte antimicrobial function in clinical septic-shock environments. This approach may help prevent the development of secondary, nosocomial infections in patients recovering from septic shock.
Collapse
Affiliation(s)
- Woon Yong Kwon
- Department of Emergency Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Yoon Sun Jung
- Department of Critical Care Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Gil Joon Suh
- Department of Emergency Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sung Hee Kim
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Areum Lee
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jeong Yeon Kim
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Hayoung Kim
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Heesu Park
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jieun Shin
- Hospital Medicine Center, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Taegyun Kim
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Kyung Su Kim
- Department of Emergency Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
- Research Center for Disaster Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Kiyoshi Itagaki
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| |
Collapse
|
3
|
Vidal-dos-Santos M, Anunciação LF, Armstrong-Jr R, Ricardo-da-Silva FY, Ramos IYT, Correia CJ, Moreira LFP, Leuvenink HGD, Breithaupt-Faloppa AC. 17β-estradiol and methylprednisolone association as a therapeutic option to modulate lung inflammation in brain-dead female rats. Front Immunol 2024; 15:1375943. [PMID: 38765005 PMCID: PMC11099279 DOI: 10.3389/fimmu.2024.1375943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
Introduction Brain death (BD) is known to compromise graft quality by causing hemodynamic, metabolic, and hormonal changes. The abrupt reduction of female sex hormones after BD was associated with increased lung inflammation. The use of both corticoids and estradiol independently has presented positive results in modulating BD-induced inflammatory response. However, studies have shown that for females the presence of both estrogen and corticoids is necessary to ensure adequate immune response. In that sense, this study aims to investigate how the association of methylprednisolone (MP) and estradiol (E2) could modulate the lung inflammation triggered by BD in female rats. Methods Female Wistar rats (8 weeks) were divided into four groups: sham (animals submitted to the surgical process, without induction of BD), BD (animals submitted to BD), MP/E2 (animals submitted to BD that received MP and E2 treatment 3h after BD induction) and MP (animals submitted to BD that received MP treatment 3h after BD induction). Results Hemodynamics, systemic and local quantification of IL-6, IL-1β, VEGF, and TNF-α, leukocyte infiltration to the lung parenchyma and airways, and adhesion molecule expression were analyzed. After treatment, MP/E2 association was able to reinstate mean arterial pressure to levels close to Sham animals (p<0.05). BD increased leukocyte infiltration to the airways and MP/E2 was able to reduce the number of cells (p=0.0139). Also, the associated treatment modulated the vasculature by reducing the expression of VEGF (p=0.0616) and maintaining eNOS levels (p=0.004) in lung tissue. Discussion Data presented in this study show that the association between corticoids and estradiol could represent a better treatment strategy for lung inflammation in the female BD donor by presenting a positive effect in the hemodynamic management of the donor, as well as by reducing infiltrated leukocyte to the airways and release of inflammatory markers in the short and long term.
Collapse
Affiliation(s)
- Marina Vidal-dos-Santos
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Lucas F. Anunciação
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Armstrong-Jr
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Y. Ricardo-da-Silva
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Isabella Yumi Taira Ramos
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Cristiano J. Correia
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz F. P. Moreira
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Ana C. Breithaupt-Faloppa
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Haynes ME, Sullivan DP, Muller WA. Neutrophil Infiltration and Function in the Pathogenesis of Inflammatory Airspace Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:628-636. [PMID: 38309429 PMCID: PMC11074974 DOI: 10.1016/j.ajpath.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
Neutrophils are an important cell type often considered the body's first responders to inflammatory insult or damage. They are recruited to the tissue of the lungs in patients with inflammatory airspace diseases and have unique and complex functions that range from helpful to harmful. The uniqueness of these functions is due to the heterogeneity of the inflammatory cascade and retention in the vasculature. Neutrophils are known to marginate, or remain stagnant, in the lungs even in nondisease conditions. This review discusses the ways in which the recruitment, presence, and function of neutrophils in the airspace of the lungs are unique from those of other tissues, and the complex effects of neutrophils on pathogenesis. Inflammatory mediators produced by neutrophils, such as neutrophil elastase, proresolving mediators, and neutrophil extracellular traps, dramatically affect the outcomes of patients with disease of the lungs.
Collapse
Affiliation(s)
- Maureen E Haynes
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David P Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
5
|
Schwab AD, Wyatt TA, Moravec G, Thiele GM, Nelson AJ, Gleason A, Schanze O, Duryee MJ, Romberger DJ, Mikuls TR, Poole JA. Targeting transitioning lung monocytes/macrophages as treatment strategies in lung disease related to environmental exposures. Respir Res 2024; 25:157. [PMID: 38594676 PMCID: PMC11003126 DOI: 10.1186/s12931-024-02804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Environmental/occupational exposures cause significant lung diseases. Agricultural organic dust extracts (ODE) and bacterial component lipopolysaccharide (LPS) induce recruited, transitioning murine lung monocytes/macrophages, yet their cellular role remains unclear. METHODS CCR2 RFP+ mice were intratracheally instilled with high concentration ODE (25%), LPS (10 μg), or gram-positive peptidoglycan (PGN, 100 μg) for monocyte/macrophage cell-trafficking studies. CCR2 knockout (KO) mice and administration of intravenous clodronate liposomes strategies were employed to reduce circulating monocytes available for lung recruitment following LPS exposure. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected. Pro-inflammatory and/or pro-fibrotic cytokines, chemokines, and lung extracellular matrix mediators were quantitated by ELISA. Infiltrating lung cells including monocyte/macrophage subpopulations, neutrophils, and lymphocytes were characterized by flow cytometry. Lung histopathology, collagen content, vimentin, and post-translational protein citrullination and malondialdehyde acetaldehyde (MAA) modification were quantitated. Parametric statistical tests (one-way ANOVA, Tukey'smultiple comparison) and nonparametric statistical (Kruskal-Wallis, Dunn's multiple comparison) tests were used following Shapiro-Wilk testing for normality. RESULTS Intratracheal instillation of ODE, LPS, or PGN robustly induced the recruitment of inflammatory CCR2+ CD11cintCD11bhi monocytes/macrophages and both CCR2+ and CCR2- CD11c-CD11bhi monocytes at 48 h. There were also increases in CCR2+ CD4+ and CD8+ T cells and NK cells. Despite reductions in LPS-induced lung infiltrating CD11cintCD11bhi cells (54% reduction), CCR2 knockout (KO) mice were not protected against LPS-induced inflammatory and pro-fibrotic consequences. Instead, compensatory increases in lung neutrophils and CCL2 and CCL7 release occurred. In contrast, the depletion of circulating monocytes through the administration of intravenous clodronate (vs. vehicle) liposomes 24 h prior to LPS exposure reduced LPS-induced infiltrating CD11cintCD11bhi monocyte-macrophage subpopulation by 59% without compensatory changes in other cell populations. Clodronate liposome pre-treatment significantly reduced LPS-induced IL-6 (66% reduction), matrix metalloproteinases (MMP)-3 (36%), MMP-8 (57%), tissue inhibitor of metalloproteinases (61%), fibronectin (38%), collagen content (22%), and vimentin (40%). LPS-induced lung protein citrullination and MAA modification, post-translational modifications implicated in lung disease, were reduced (39% and 48%) with clodronate vs. vehicle liposome. CONCLUSION Highly concentrated environmental/occupational exposures induced the recruitment of CCR2+ and CCR2- transitioning monocyte-macrophage and monocyte subpopulations and targeting peripheral monocytes may reduce the adverse lung consequences resulting from exposures to LPS-enriched inhalants.
Collapse
Affiliation(s)
- Aaron D Schwab
- Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Todd A Wyatt
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA
- Division of Pulmonary, Critical Care & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Grace Moravec
- Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Geoffrey M Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amy J Nelson
- Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Angela Gleason
- Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Oliver Schanze
- Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael J Duryee
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Debra J Romberger
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA
- Division of Pulmonary, Critical Care & Sleep, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ted R Mikuls
- Veterans Affairs Nebraska-Western Iowa Health Care System, Research Service, Omaha, NE, USA
- Division of Rheumatology and Immunology, Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jill A Poole
- Division of Allergy & Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
LaFon DC, Woo H, Fedarko N, Azar A, Hill H, Tebo AE, Martins TB, Han MK, Krishnan JA, Ortega VE, Barjaktarevic I, Kaner RJ, Hastie A, O'Neal WK, Couper D, Woodruff PG, Curtis JL, Hansel NN, Nahm MH, Dransfield MT, Putcha N. Reduced quantity and function of pneumococcal antibodies are associated with exacerbations of COPD in SPIROMICS. Clin Immunol 2023; 250:109324. [PMID: 37030524 PMCID: PMC10171244 DOI: 10.1016/j.clim.2023.109324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
While hypogammaglobulinemia is associated with COPD exacerbations, it is unknown whether frequent exacerbators have specific defects in antibody production/function. We hypothesized that reduced quantity/function of serum pneumococcal antibodies correlate with exacerbation risk in the SPIROMICS cohort. We measured total pneumococcal IgG in n = 764 previously vaccinated participants with COPD. In a propensity-matched subset of n = 200 with vaccination within five years (n = 50 without exacerbations in the previous year; n = 75 with one, n = 75 with ≥2), we measured pneumococcal IgG for 23 individual serotypes, and pneumococcal antibody function for 4 serotypes. Higher total pneumococcal IgG, serotype-specific IgG (17/23 serotypes), and antibody function (3/4 serotypes) were independently associated with fewer prior exacerbations. Higher pneumococcal IgG (5/23 serotypes) predicted lower exacerbation risk in the following year. Pneumococcal antibodies are inversely associated with exacerbations, supporting the presence of immune defects in frequent exacerbators. With further study, pneumococcal antibodies may be useful biomarkers for immune dysfunction in COPD.
Collapse
Affiliation(s)
- David C LaFon
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States; UAB Lung Health Center, Birmingham, AL, United States.
| | - Han Woo
- Johns Hopkins University, Baltimore, MD, United States
| | - Neal Fedarko
- Johns Hopkins University, Baltimore, MD, United States
| | - Antoine Azar
- Johns Hopkins University, Baltimore, MD, United States
| | - Harry Hill
- Department of Pathology, University of Utah Health and ARUP Laboratories, Salt Lake City, UT, United States
| | - Anne E Tebo
- Department of Pathology, University of Utah Health and ARUP Laboratories, Salt Lake City, UT, United States; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Thomas B Martins
- Department of Pathology, University of Utah Health and ARUP Laboratories, Salt Lake City, UT, United States
| | - MeiLan K Han
- Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | | | | | - Igor Barjaktarevic
- Pulmonary and Critical Care, University of California Los Angeles, Los Angeles, CA, United States
| | | | - Annette Hastie
- Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Wanda K O'Neal
- Marisco Lung Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - David Couper
- University of North Carolina Department of Biostatistics, Chapel Hill, NC, United States
| | | | - Jeffrey L Curtis
- Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States; VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | | | - Moon H Nahm
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States; Department of Microbiology, University of Alabama at Birmingham, United States
| | - Mark T Dransfield
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, United States; UAB Lung Health Center, Birmingham, AL, United States; Birmingham VA Medical Center, Birmingham, AL, United States
| | | |
Collapse
|
7
|
Komolafe K, Pacurari M. CXC Chemokines in the Pathogenesis of Pulmonary Disease and Pharmacological Relevance. Int J Inflam 2022; 2022:4558159. [PMID: 36164329 PMCID: PMC9509283 DOI: 10.1155/2022/4558159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Chemokines and their receptors play important roles in the pathophysiology of many diseases by regulating the cellular migration of major inflammatory and immune players. The CXC motif chemokine subfamily is the second largest family, and it is further subdivided into ELR motif CXC (ELR+) and non-ELR motif (ELR-) CXC chemokines, which are effective chemoattractants for neutrophils and lymphocytes/monocytes, respectively. These chemokines and their receptors are expected to have a significant impact on a wide range of lung diseases, many of which have inflammatory or immunological underpinnings. As a result, manipulations of this subfamily of chemokines and their receptors using small molecular agents and other means have been explored for potential therapeutic benefit in the setting of several lung pathologies. Furthermore, encouraging preclinical data has necessitated the progression of a few of these drugs into clinical trials in order to make the most effective use of interventions in the development of viable targeted therapeutics. The current review presents the understanding of the roles of CXC ligands (CXCLs) and their cognate receptors (CXCRs) in the pathogenesis of several lung diseases such as allergic rhinitis, COPD, lung fibrosis, lung cancer, pneumonia, and tuberculosis. The potential therapeutic benefits of pharmacological or other CXCL/CXCR axis manipulations are also discussed.
Collapse
Affiliation(s)
- Kayode Komolafe
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
| | - Maricica Pacurari
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
8
|
Liang X, Chen Y, Fan Y. Bioinformatics approach to identify common gene signatures of patients with coronavirus 2019 and lung adenocarcinoma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22012-22030. [PMID: 34775559 PMCID: PMC8590527 DOI: 10.1007/s11356-021-17321-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues as a global pandemic. Patients with lung cancer infected with COVID-19 may develop severe disease or die. Treating such patients severely burdens overwhelmed healthcare systems. Here, we identified potential pathological mechanisms shared between patients with COVID-19 and lung adenocarcinoma (LUAD). Co-expressed, differentially expressed genes (DEGs) in patients with COVID-19 and LUAD were identified and used to construct a protein-protein interaction (PPI) network and to perform enrichment analysis. We used the NetworkAnalyst platform to establish a co-regulatory of the co-expressed DEGs, and we used Spearman's correlation to evaluate the significance of associations of hub genes with immune infiltration and immune checkpoints. Analysis of three datasets identified 112 shared DEGs, which were used to construct a protein-PPI network. Subsequent enrichment analysis revealed co-expressed genes related to biological process (BP), molecular function (MF), and cellular component (CC) as well as to pathways, specific organs, cells, and diseases. Ten co-expressed hub genes were employed to construct a gene-miRNA, transcription factor (TF)-gene, and TF-miRNA network. Hub genes were significantly associated with immune infiltration and immune checkpoints. Finally, methylation level of hub genes in LUAD was obtained via UALCAN database. The present multi-dimensional study reveals commonality in specific gene expression by patients with COVID-19 and LUAD. These findings provide insights into developing strategies for optimising the management and treatment of patients with LUAD with COVID-19.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yali Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuchao Fan
- Department of Anesthesiology, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, School of Medicine, University of Electronic Science and Technology of China, No.55, Section 4, Renmin South Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
9
|
Fiorillo B, Sepe V, Conflitti P, Roselli R, Biagioli M, Marchianò S, De Luca P, Baronissi G, Rapacciuolo P, Cassiano C, Catalanotti B, Zampella A, Limongelli V, Fiorucci S. Structural Basis for Developing Multitarget Compounds Acting on Cysteinyl Leukotriene Receptor 1 and G-Protein-Coupled Bile Acid Receptor 1. J Med Chem 2021; 64:16512-16529. [PMID: 34767347 DOI: 10.1021/acs.jmedchem.1c01078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the molecular target of 40% of marketed drugs and the most investigated structures to develop novel therapeutics. Different members of the GPCRs superfamily can modulate the same cellular process acting on diverse pathways, thus representing an attractive opportunity to achieve multitarget drugs with synergic pharmacological effects. Here, we present a series of compounds with dual activity toward cysteinyl leukotriene receptor 1 (CysLT1R) and G-protein-coupled bile acid receptor 1 (GPBAR1). They are derivatives of REV5901─the first reported dual compound─with therapeutic potential in the treatment of colitis and other inflammatory processes. We report the binding mode of the most active compounds in the two GPCRs, revealing unprecedented structural basis for future drug design studies, including the presence of a polar group opportunely spaced from an aromatic ring in the ligand to interact with Arg792.60 of CysLT1R and achieve dual activity.
Collapse
Affiliation(s)
- Bianca Fiorillo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Paolo Conflitti
- Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute, via G. Buffi 13, CH-6900 Lugano, Switzerland
| | - Rosalinda Roselli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi 1, 06132 Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi 1, 06132 Perugia, Italy
| | - Pasquale De Luca
- Head─Sequencing and Molecular Analyses Center, RIMAR Stazione Zoologica, Villa Comunale, 80121 Naples, Italy
| | - Giuliana Baronissi
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Pasquale Rapacciuolo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Bruno Catalanotti
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy
| | - Vittorio Limongelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, I-80131 Naples, Italy.,Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler Institute, via G. Buffi 13, CH-6900 Lugano, Switzerland
| | - Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Piazza L. Severi 1, 06132 Perugia, Italy
| |
Collapse
|
10
|
Affiliation(s)
- Merete B Long
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| |
Collapse
|