1
|
Wei YS, Tsai SY, Lin SL, Chen YT, Tsai PS. Methylglyoxal-Stimulated Mesothelial Cells Prompted Fibroblast-to-Proto-Myofibroblast Transition. Int J Mol Sci 2025; 26:813. [PMID: 39859527 PMCID: PMC11766140 DOI: 10.3390/ijms26020813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
During long-term peritoneal dialysis, peritoneal fibrosis (PF) often happens and results in ultrafiltration failure, which directly leads to the termination of dialysis. The accumulation of extracellular matrix produced from an increasing number of myofibroblasts was a hallmark characteristic of PF. To date, glucose degradation products (GDPs, i.e., methylglyoxal (MGO)) that appeared during the heating and storage of the dialysate are considered to be key components to initiating PF, but how GDPs lead to the activation of myofibroblast in fibrotic peritoneum has not yet been fully elucidated. In this study, mesothelial cell line (MeT-5A) and fibroblast cell line (MRC-5) were used to investigate the transcriptomic and proteomic changes to unveil the underlying mechanism of MGO-induced PF. Our transcriptomic data from the MGO-stimulated mesothelial cells showed upregulation of genes involved in pro-inflammatory, apoptotic, and fibrotic pathways. While no phenotypic changes were noted on fibroblasts after direct MGO, supernatant from MGO-stimulated mesothelial cells promoted fibroblasts to change into proto-myofibroblasts, activated fibroblasts in the first stage toward myofibroblasts. In conclusion, this study showed that MGO-stimulated mesothelial cells promoted fibroblast-to-proto-myofibroblast transition; however, additional involvement of other factors or cells (e.g., macrophages) may be needed to complete the transformation into myofibroblasts.
Collapse
Affiliation(s)
- Yu-Syuan Wei
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Su-Yi Tsai
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan;
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Shuei-Liong Lin
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan;
| | - Yi-Ting Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan;
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
2
|
Wang Y, Zhang Y, Ma M, Zhuang X, Lu Y, Miao L, Lu X, Cui Y, Cui W. Mechanisms underlying the involvement of peritoneal macrophages in the pathogenesis and novel therapeutic strategies for dialysis-induced peritoneal fibrosis. Front Immunol 2024; 15:1507265. [PMID: 39749340 PMCID: PMC11693514 DOI: 10.3389/fimmu.2024.1507265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Long-term exposure of the peritoneum to peritoneal dialysate results in pathophysiological changes in the anatomical organization of the peritoneum and progressive development of peritoneal fibrosis. This leads to a decline in peritoneal function and ultrafiltration failure, ultimately necessitating the discontinuation of peritoneal dialysis, severely limiting the potential for long-term maintenance. Additionally, encapsulating peritoneal sclerosis, a serious consequence of peritoneal fibrosis, resulting in patients discontinuing PD and significant mortality. The causes and mechanisms underlying peritoneal fibrosis in patients undergoing peritoneal dialysis remain unknown, with no definitive treatment available. However, abnormal activation of the immune system appears to be involved in altering the structure of the peritoneum and promoting fibrotic changes. Macrophage infiltration and polarization are key contributors to pathological injury within the peritoneum, showing a strong correlation with the epithelial-to-mesenchymal transition of mesothelial cells and driving the process of fibrosis. This article discusses the role and mechanisms underlying macrophage activation-induced peritoneal fibrosis resulting from PD by analyzing relevant literature from the past decade and provides an overview of recent therapeutic approaches targeting macrophages to treat this condition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yingchun Cui
- Department of Nephrology, Second Hospital of Jilin University,
Changchun, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University,
Changchun, China
| |
Collapse
|
3
|
Zhang L, Zhang H, Su S, Jia Y, Liang C, Fang Y, Hong D, Li T, Ma F. Risk factor assessment and microbiome analysis in peritoneal dialysis-related peritonitis reveal etiological characteristics. Front Immunol 2024; 15:1443468. [PMID: 39611142 PMCID: PMC11602453 DOI: 10.3389/fimmu.2024.1443468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/18/2024] [Indexed: 11/30/2024] Open
Abstract
Background Peritoneal dialysis-related peritonitis (PDRP) is one of the most common complications of peritoneal dialysis (PD). Understanding the risk factors and etiological characteristics is indispensable for infection prevention and improving the outcome and life quality. Methods A total of 70 PD patients were separated into the PDRP group (n=25) and the control group (n=45). Variables, including gender, age, body mass index, primary diseases, and history of basic diseases, in the two groups were analyzed to assess the risk factors of PDRP. Metagenomic next-generation sequencing (mNGS) and microbial culture were compared in detecting pathogenic microorganisms. Gut microbiota analysis was performed in 35 PDRP patients based on mNGS data. Results Dialysis time and times of dialysate change were the risk factors of PDRP, and times of dialysate change was the independent risk factor of PDRP (p = 0.046). mNGS produced higher sensitivity (65.79%) than microbial culture (36.84%) in identifying pathogenic microorganisms. Staphylococcus aureus and Klebsiella pneumoniae (four cases) were the most frequent pathogens causing PDRP, followed by Staphylococcus capitis (three cases). β diversity of the gut microbiota was significantly different between patients with fewer times of dialysate change (≤4) and more (>5), as well as between patients with gram-positive (G+) bacterial and gram-negative (G-) bacterial infection. Conclusion The dialysis time and times of dialysate changes not only are risk factors for peritonitis in PD patients but also stimulate significant changes in the gut microbiome structure in PDRP patients. These findings may provide a novel viewpoint for the management of patients with PDRP.
Collapse
Affiliation(s)
- Li Zhang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Hongrui Zhang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Sensen Su
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Ye Jia
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Chenyang Liang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yuan Fang
- Genoxor Medical Science and Technology Inc., Shanghai, China
| | - Dengwei Hong
- Genoxor Medical Science and Technology Inc., Shanghai, China
| | - Tianyu Li
- Genoxor Medical Science and Technology Inc., Shanghai, China
| | - Fuzhe Ma
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Chen YJ, Chang TY, Chen CH. Unraveling the association between chronic inflammatory demyelinating polyradiculoneuropathy and peritoneal Dialysis. BMC Nephrol 2024; 25:383. [PMID: 39468467 PMCID: PMC11514778 DOI: 10.1186/s12882-024-03830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a rare disease seen in the general population and has been reported as showing an increased incidence in the peritoneal dialysis (PD) population, as documented in case reports. METHODS We conducted a case-control study using data from the Taichung Veterans General Hospital electric medical record database from the years 2010 to 2023. We defined cases as CIDP with End-stage kidney disease (ESKD) and controls as without CIDP. A logistic regression analysis was used to investigate the association between CIDP and dialysis modality, age, gender, dialysis duration, plasma potassium > 5.5 mEq/L and < 2.5 mEq/L, and intact parathyroid hormone (i-PTH) > 613 pg/mL. RESULTS Our findings suggest that PD may be a risk factor in the ESKD population (Odds ratio: 5.125, C.I.: 1.078 ~ 24.372, p = 0.040) according to logistic regression analysis. Dialysis duration, gender, diabetes mellitus, HbA1c > 7%, hypokalemia, hyperkalemia, and hyperparathyroidism did not show an association with CIDP. CONCLUSION There seems to be an association between PD and CIDP in this case-control study. Possible mechanisms may involve systemic inflammation induced by peritoneal dialysate exchange or the content of the dialysate. Further studies are still needed.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ting-Ya Chang
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Hsu Chen
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.
- Department of Life Science, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
5
|
Ito Y, Sun T, Tawada M, Kinashi H, Yamaguchi M, Katsuno T, Kim H, Mizuno M, Ishimoto T. Pathophysiological Mechanisms of Peritoneal Fibrosis and Peritoneal Membrane Dysfunction in Peritoneal Dialysis. Int J Mol Sci 2024; 25:8607. [PMID: 39201294 PMCID: PMC11354376 DOI: 10.3390/ijms25168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
The characteristic feature of chronic peritoneal damage in peritoneal dialysis (PD) is a decline in ultrafiltration capacity associated with pathological fibrosis and angiogenesis. The pathogenesis of peritoneal fibrosis is attributed to bioincompatible factors of PD fluid and peritonitis. Uremia is associated with peritoneal membrane inflammation that affects fibrosis, neoangiogenesis, and baseline peritoneal membrane function. Net ultrafiltration volume is affected by capillary surface area, vasculopathy, peritoneal fibrosis, and lymphangiogenesis. Many inflammatory cytokines induce fibrogenic growth factors, with crosstalk between macrophages and fibroblasts. Transforming growth factor (TGF)-β and vascular endothelial growth factor (VEGF)-A are the key mediators of fibrosis and angiogenesis, respectively. Bioincompatible factors of PD fluid upregulate TGF-β expression by mesothelial cells that contributes to the development of fibrosis. Angiogenesis and lymphangiogenesis can progress during fibrosis via TGF-β-VEGF-A/C pathways. Complement activation occurs in fungal peritonitis and progresses insidiously during PD. Analyses of the human peritoneal membrane have clarified the mechanisms by which encapsulating peritoneal sclerosis develops. Different effects of dialysates on the peritoneal membrane were also recognized, particularly in terms of vascular damage. Understanding the pathophysiologies of the peritoneal membrane will lead to preservation of peritoneal membrane function and improvements in technical survival, mortality, and quality of life for PD patients.
Collapse
Affiliation(s)
- Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Ting Sun
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Mitsuhiro Tawada
- Department of Nephrology, Imaike Jin Clinic, Nagoya 464-0850, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Makoto Yamaguchi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Aichi Medical University Medical Center, Okazaki 444-2148, Japan;
| | - Hangsoo Kim
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (H.K.); (M.M.)
| | - Masashi Mizuno
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (H.K.); (M.M.)
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| |
Collapse
|
6
|
Su H, Zou R, Su J, Chen X, Yang H, An N, Yang C, Tang J, Liu H, Yao C. Sterile inflammation of peritoneal membrane caused by peritoneal dialysis: focus on the communication between immune cells and peritoneal stroma. Front Immunol 2024; 15:1387292. [PMID: 38779674 PMCID: PMC11109381 DOI: 10.3389/fimmu.2024.1387292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Peritoneal dialysis is a widely used method for treating kidney failure. However, over time, the peritoneal structure and function can deteriorate, leading to the failure of this therapy. This deterioration is primarily caused by infectious and sterile inflammation. Sterile inflammation, which is inflammation without infection, is particularly concerning as it can be subtle and often goes unnoticed. The onset of sterile inflammation involves various pathological processes. Peritoneal cells detect signals that promote inflammation and release substances that attract immune cells from the bloodstream. These immune cells contribute to the initiation and escalation of the inflammatory response. The existing literature extensively covers the involvement of different cell types in the sterile inflammation, including mesothelial cells, fibroblasts, endothelial cells, and adipocytes, as well as immune cells such as macrophages, lymphocytes, and mast cells. These cells work together to promote the occurrence and progression of sterile inflammation, although the exact mechanisms are not fully understood. This review aims to provide a comprehensive overview of the signals from both stromal cells and components of immune system, as well as the reciprocal interactions between cellular components, during the initiation of sterile inflammation. By understanding the cellular and molecular mechanisms underlying sterile inflammation, we may potentially develop therapeutic interventions to counteract peritoneal membrane damage and restore normal function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cuiwei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
7
|
Hirano A, Kadoya H, Yamanouchi Y, Kishi S, Sasaki T, Kashihara N. IL-1β may be an indicator of peritoneal deterioration after healing of peritoneal dialysis-associated peritonitis. BMC Nephrol 2023; 24:374. [PMID: 38114999 PMCID: PMC10731768 DOI: 10.1186/s12882-023-03431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Peritoneal dialysis (PD) is an essential lifesaving treatment for end-stage renal disease. However, PD therapy is limited by peritoneal inflammation, which leads to peritoneal membrane failure because of progressive peritoneal deterioration. Peritonitis is the most common complication in patients undergoing PD. Thus, elucidating the mechanism of chronic peritoneal inflammation after PD-associated peritonitis is an urgent issue for patients undergoing PD. This first case report suggests that an increased interleukin-1β (IL-1β) expression in the peritoneal dialysate after healing of peritonitis can contribute to peritoneal deterioration. CASE PRESENTATION A 64-year-old woman was diagnosed with diabetes mellitus 10 years ago and had been started on PD for end-stage renal disease. One day, the patient developed PD-associated acute peritonitis and was admitted to our hospital for treatment. Thus, treatment with antimicrobial agents was initiated for PD-associated peritonitis. Dialysate turbidity gradually disappeared after treatment with antimicrobial agents, and the number of cells in the PD fluid decreased. After 2 weeks of antimicrobial therapy, peritonitis was clinically cured, and the patient was discharged. Thereafter, the patient did not develop peritonitis; however, residual renal function tended to decline, and peritoneal function also decreased in a relatively short period. We evaluated pro-inflammatory cytokine levels before and after PD-associated peritonitis; interestingly, the levels of IL-1β remained high in the PD fluid, even after remission of bacterial peritonitis. In addition, it correlated with decreased peritoneal function. CONCLUSIONS This case suggests that inflammasome-derived pro-inflammatory cytokines may contribute to chronic inflammation-induced peritoneal deterioration after PD-related peritonitis is cured.
Collapse
Affiliation(s)
- Akira Hirano
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Hiroyuki Kadoya
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan.
| | - Yu Yamanouchi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Tamaki Sasaki
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
8
|
Yu J, Zhu L, Ni J, Tong M, Wang H. Technique failure in peritoneal dialysis-related peritonitis: risk factors and patient survival. Ren Fail 2023; 45:2205536. [PMID: 37125594 PMCID: PMC10134955 DOI: 10.1080/0886022x.2023.2205536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the association between patient clinical characteristics and technique failure in peritoneal dialysis-related peritonitis (PDRP). The effect of peritonitis-associated technique failure on patient survival was also assessed. METHODS Patients diagnosed with PDRP from January 1, 2010 to June 30, 2022 were retrospectively reviewed and analyzed. Relevant demographic, biochemical, and clinical data were collected. Univariate and multivariate logistic regression analyses were used to determine the predictors of peritonitis-associated technique failure in PD. Patients were divided into technique failure (F group) and nontechnique failure (NF group) groups. Patients were followed until death or until the date of Oct 1, 2022. Kaplan-Meier survival curves and landmark analysis were used to assess the survival of the PDRP cohort. Cox regression models were used to assess the association between potential risk factors and mortality. RESULTS A total of 376 patients with 648 cases of PDRP were included in this study. Multivariate logistic regression analysis demonstrated that peritoneal dialysis (PD) duration (OR = 1.12 [1.03, 1.21], p = 0.005), dialysate WBC count on Day 3 after antibiotic therapy (OR = 1.41 [1.22, 1.64], p = 0.001), blood neutrophil-to-lymphocyte ratio (NLR) (OR = 1.83 [1.25, 2.70], p = 0.002), and serum lactate dehydrogenase (LDH) (OR = 4.13 [1.69, 10.11], p = 0.002) were independent predictors for technique failure in PDRP. Furthermore, serum high-density lipoprotein (HDL) (OR = 0.28 [0.13, 0.64], p = 0.002) was a protective factor against technique failure. According to the Kaplan-Meier analysis, patients experiencing peritonitis-associated technique failure had lower postperitonitis survival (log-rank = 4.326, p = 0.038). According to the landmark analysis, patients with a history of peritonitis-associated technical failures had a higher 8-year mortality after peritoneal dialysis. A Cox model adjusted for plausible predetermined confounders showed that technique failure was independently associated with all-cause mortality. CONCLUSIONS Dialysate WBC count on Day 3, PD duration, NLR, and LDH were independent risk factors for technique failure, whereas HDL was a protective factor. Peritonitis-associated technique failure had a higher risk of mortality and adverse effects on postperitonitis survival.
Collapse
Affiliation(s)
- Jin Yu
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University), Hangzhou, P. R. China
| | - Lingli Zhu
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University), Hangzhou, P. R. China
| | - Jun Ni
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University), Hangzhou, P. R. China
| | - Mengli Tong
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University), Hangzhou, P. R. China
| | - Hua Wang
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine (Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University), Hangzhou, P. R. China
| |
Collapse
|
9
|
Kadoya H, Hirano A, Umeno R, Kajimoto E, Iwakura T, Kondo M, Wada Y, Kidokoro K, Kishi S, Nagasu H, Sasaki T, Taniguchi S, Takahashi M, Kashihara N. Activation of the inflammasome drives peritoneal deterioration in a mouse model of peritoneal fibrosis. FASEB J 2023; 37:e23129. [PMID: 37606578 DOI: 10.1096/fj.202201777rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
During peritoneal dialysis (PD), the peritoneum is exposed to a bioincompatible dialysate, deteriorating the tissue and limiting the long-term effectiveness of PD. Peritoneal fibrosis is triggered by chronic inflammation induced by a variety of stimuli, including peritonitis. Exposure to PD fluid alters peritoneal macrophages phenotype. Inflammasome activation triggers chronic inflammation. First, it was determined whether inflammasome activation causes peritoneal deterioration. In the in vivo experiments, the increased expression of the inflammasome components, caspase-1 activity, and concomitant overproduction of IL-1β and IL-18 were observed in a mouse model of peritoneal fibrosis. ASC-positive and F4/80-positive cells colocalized in the subperitoneal mesothelial cell layer. These macrophages expressed high CD44 levels indicating that the CD44-positive macrophages contribute to developing peritoneal deterioration. Furthermore, intravital imaging of the peritoneal microvasculature demonstrated that the circulating CD44-positive leukocytes may contribute to peritoneal fibrosis. Bone marrow transplantation in ASC-deficient mice suppressed inflammasome activation, thereby attenuating peritoneal fibrosis in a high glucose-based PD solution-injected mouse model. Our results suggest inflammasome activation in CD44-positive macrophages may be involved in developing peritoneal fibrosis. The inflammasome-derived pro-inflammatory cytokines might therefore serve as new biomarkers for developing encapsulating peritoneal sclerosis.
Collapse
Affiliation(s)
- Hiroyuki Kadoya
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Akira Hirano
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Reina Umeno
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Eriko Kajimoto
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Tsukasa Iwakura
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Megumi Kondo
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Yoshihisa Wada
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Kengo Kidokoro
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Seiji Kishi
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Hajime Nagasu
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Tamaki Sasaki
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Shun'ichiro Taniguchi
- Advanced Cancer Medicine for Gynecologic Cancer, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| |
Collapse
|
10
|
Nasci VL, Liu P, Marks AM, Williams AC, Kriegel AJ. Transcriptomic analysis identifies novel candidates in cardiorenal pathology mediated by chronic peritoneal dialysis. Sci Rep 2023; 13:10051. [PMID: 37344499 DOI: 10.1038/s41598-023-36647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
Peritoneal dialysis (PD) is associated with increased cardiovascular (CV) risk. Studies of PD-related CV pathology in animal models are lacking despite the clinical importance. Here we introduce the phenotypic evaluation of a rat model of cardiorenal syndrome in response to chronic PD, complemented by a rich transcriptomic dataset detailing chronic PD-induced changes in left ventricle (LV) and kidney tissues. This study aims to determine how PD alters CV parameters and risk factors while identifying pathways for potential therapeutic targets. Sprague Dawley rats underwent Sham or 5/6 nephrectomy (5/6Nx) at 10 weeks of age. Six weeks later an abdominal dialysis catheter was placed in all rats before random assignment to Control or PD (3 daily 1-h exchanges) groups for 8 days. Renal and LV pathology and transcriptomic analysis was performed. The PD regimen reduced circulating levels of BUN in 5/6Nx, indicating dialysis efficacy. PD did not alter blood pressure or cardiovascular function in Sham or 5/6Nx rats, though it attenuated cardiac hypertrophy. Importantly PD increased serum triglycerides in 5/6Nx rats. Furthermore, transcriptomic analysis revealed that PD induced numerous changed transcripts involved with inflammatory pathways, including neutrophil activation and atherosclerosis signaling. We have adapted a uremic rat model of chronic PD. Chronic PD induced transcriptomic changes related to inflammatory signaling that occur independent of 5/6Nx and augmented circulating triglycerides and predicted atherosclerosis signaling in 5/6Nx LV tissues. The changes are indicative of increased CV risk due to PD and highlight several pathways for potential therapeutic targets.
Collapse
Affiliation(s)
- Victoria L Nasci
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Amanda M Marks
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Adaysha C Williams
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
11
|
Zhao Z, Yan Q, Li D, Li G, Cai J, Pan S, Duan J, Liu D, Liu Z. Relationship between serum iPTH and peritonitis episodes in patients undergoing continuous ambulatory peritoneal dialysis. Front Endocrinol (Lausanne) 2023; 14:1081543. [PMID: 37051200 PMCID: PMC10083419 DOI: 10.3389/fendo.2023.1081543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
Background Peritonitis is considered as one of the most serious complications that cause hospitalization in patients undergoing continuous ambulatory peritoneal dialysis (CAPD). There is limited evidence on the impact of the parathyroid hormone (PTH) on the first peritoneal dialysis (PD)-associated peritonitis episode. We aimed to investigate the influence of serum intact parathyroid hormone (iPTH) on peritonitis in patients undergoing PD. Methods This was a retrospective cohort study. Patients undergoing initial CAPD from a single center in China were enrolled. The baseline characteristics and clinical information were recorded. The primary outcome of interest was the occurrence of the first PD-associated peritonitis episode. Five Cox proportional hazard models were constructed in each group set. In group set 1, all participants were divided into three subgroups by tertiles of the serum concentration of iPTH; in group set 2, all participants were divided into three subgroups based on the serum concentration of iPTH with 150 pg/ml interval (<150, 150-300, and >300 pg/ml). Hazard ratios and 95% confidence intervals (CIs) were calculated for each model. The multivariate linear regression analysis elimination procedure assessed the association between the clinical characteristics at baseline and the iPTH levels. Restricted cubic spline models were constructed, and stratified analyses were also conducted. Results A total of 582 patients undergoing initial PD (40% women; mean age, 45.1 ± 11.5 years) from a single center in China were recruited. The median follow-up duration was 25.3 months. Multivariate Cox regression analysis showed that, in the fully adjusted model, a higher serum iPTH level (tertile 3, iPTH >300 pg/ml) was significantly associated with a higher risk of PD-associated peritonitis at 3 years [tertile 3: hazard ratio (HR) = 1.53, 95%CI = 1.03-2.55, p = 0.03; iPTH > 300 pg/ml: HR = 1.57, 95%CI = 1.08-2.27, p = 0.02]. The hazard ratio for every 100 pg/ml increase in serum iPTH level was 1.12 (95%CI = 1.05-1.20, p < 0.01) in the total cohort when treating iPTH as a continuous variable. Conclusions An elevated iPTH level was significantly associated with an increased risk of peritonitis in patients undergoing CAPD.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Qianqian Yan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Duopin Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Guangpu Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Jingjing Cai
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Shaokang Pan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Jiayu Duan
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dongwei Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, Zhengzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| |
Collapse
|
12
|
Trionfetti F, Marchant V, González-Mateo GT, Kawka E, Márquez-Expósito L, Ortiz A, López-Cabrera M, Ruiz-Ortega M, Strippoli R. Novel Aspects of the Immune Response Involved in the Peritoneal Damage in Chronic Kidney Disease Patients under Dialysis. Int J Mol Sci 2023; 24:5763. [PMID: 36982834 PMCID: PMC10059714 DOI: 10.3390/ijms24065763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRT.
Collapse
Affiliation(s)
- Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Guadalupe T. González-Mateo
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Premium Research, S.L., 19005 Guadalajara, Spain
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznan, Poland
| | - Laura Márquez-Expósito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Manuel López-Cabrera
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| |
Collapse
|
13
|
Steiger S, Rossaint J, Zarbock A, Anders HJ. Secondary Immunodeficiency Related to Kidney Disease (SIDKD)-Definition, Unmet Need, and Mechanisms. J Am Soc Nephrol 2022; 33:259-278. [PMID: 34907031 PMCID: PMC8819985 DOI: 10.1681/asn.2021091257] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Kidney disease is a known risk factor for poor outcomes of COVID-19 and many other serious infections. Conversely, infection is the second most common cause of death in patients with kidney disease. However, little is known about the underlying secondary immunodeficiency related to kidney disease (SIDKD). In contrast to cardiovascular disease related to kidney disease, which has triggered countless epidemiologic, clinical, and experimental research activities or interventional trials, investments in tracing, understanding, and therapeutically targeting SIDKD have been sparse. As a call for more awareness of SIDKD as an imminent unmet medical need that requires rigorous research activities at all levels, we review the epidemiology of SIDKD and the numerous aspects of the abnormal immunophenotype of patients with kidney disease. We propose a definition of SIDKD and discuss the pathogenic mechanisms of SIDKD known thus far, including more recent insights into the unexpected immunoregulatory roles of elevated levels of FGF23 and hyperuricemia and shifts in the secretome of the intestinal microbiota in kidney disease. As an ultimate goal, we should aim to develop therapeutics that can reduce mortality due to infections in patients with kidney disease by normalizing host defense to pathogens and immune responses to vaccines.
Collapse
Affiliation(s)
- Stefanie Steiger
- Division of Nephrology, Department of Medicine IV, Ludwig Maximilians University Hospital of Munich, Munich, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig Maximilians University Hospital of Munich, Munich, Germany
| |
Collapse
|