1
|
Huang ZM, Kang JQ, Chen PZ, Deng LF, Li JX, He YX, Liang J, Huang N, Luo TY, Lan QW, Chen HK, Guo XG. Identifying the Interaction Between Tuberculosis and SARS-CoV-2 Infections via Bioinformatics Analysis and Machine Learning. Biochem Genet 2024; 62:2606-2630. [PMID: 37991568 DOI: 10.1007/s10528-023-10563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023]
Abstract
The number of patients with COVID-19 caused by severe acute respiratory syndrome coronavirus 2 is still increasing. In the case of COVID-19 and tuberculosis (TB), the presence of one disease affects the infectious status of the other. Meanwhile, coinfection may result in complications that make treatment more difficult. However, the molecular mechanisms underpinning the interaction between TB and COVID-19 are unclear. Accordingly, transcriptome analysis was used to detect the shared pathways and molecular biomarkers in TB and COVID-19, allowing us to determine the complex relationship between COVID-19 and TB. Two RNA-seq datasets (GSE114192 and GSE163151) from the Gene Expression Omnibus were used to find concerted differentially expressed genes (DEGs) between TB and COVID-19 to identify the common pathogenic mechanisms. A total of 124 common DEGs were detected and used to find shared pathways and drug targets. Several enterprising bioinformatics tools were applied to perform pathway analysis, enrichment analysis and networks analysis. Protein-protein interaction analysis and machine learning was used to identify hub genes (GAS6, OAS3 and PDCD1LG2) and datasets GSE171110, GSE54992 and GSE79362 were used for verification. The mechanism of protein-drug interactions may have reference value in the treatment of coinfection of COVID-19 and TB.
Collapse
Affiliation(s)
- Ze-Min Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Qi Kang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Pei-Zhen Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Lin-Fen Deng
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Xin Li
- Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Xin He
- Clinical Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510006, China
| | - Jie Liang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Nan Huang
- Clinical Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510006, China
| | - Tian-Ye Luo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi-Wen Lan
- Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Hao-Kai Chen
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Stasiłojć M, Stasiłojć G, Kuźniewska A, Rodriguez de Córdoba S, Okrój M. A Cell-Based Assay to Measure the Activity of the Complement Convertases. Kidney Int Rep 2024; 9:2260-2268. [PMID: 39081762 PMCID: PMC11284395 DOI: 10.1016/j.ekir.2024.04.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The complement system serves as a crucial defense mechanism against invading pathogens; however, dysregulation of this system can result in harmful consequences. Central to the complement cascade are the classical pathway (CP) or lectin pathway (LP) and the alternative pathway (AP) convertases. Aberrant regulation of the convertases is often implicated in the development of rare complement-related diseases. However, analyzing convertase activity poses a significant challenge due to their labile nature and intricate interactions with serum proteins. Methods In this study, we propose a novel assay for the functional evaluation of these complexes. Our approach leverages a widely available human lymphoma cell line, which when sensitized with antibodies, triggers activation of the CP with a substantial amplification by the AP. The combined action of 2, C5 blockers eculizumab and crovalimab let the cascade proceed up to the level of convertases but not further. In the next step, C5 inhibitors were washed away and guinea pig serum in ethylenediamine tetraacetic acid (EDTA) buffer supported the development of lytic sites on the platform of preexisting convertases. Results The assay detects recombinant gain-of-function (GoF) components of both convertase types within human serum or plasma. Furthermore, we demonstrate the assay's practical utility in analyzing nephrological patients harboring C3 genetic variants and illustrate its capacity to distinguish between patients and asymptomatic relatives carrying the same pathogenic C3 variant. Conclusion We provided a proof-of-concept of a new assay that detects convertase overactivity in individuals carrying variants of both pathogenic character or those of unknown significance in ubiquitous complement proteins such as C3.
Collapse
Affiliation(s)
- Małgorzata Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Alicja Kuźniewska
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | | | - Marcin Okrój
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
3
|
Rydberg V, Aradottir SS, Kristoffersson AC, Svitacheva N, Karpman D. Genetic investigation of Nordic patients with complement-mediated kidney diseases. Front Immunol 2023; 14:1254759. [PMID: 37744338 PMCID: PMC10513385 DOI: 10.3389/fimmu.2023.1254759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Background Complement activation in atypical hemolytic uremic syndrome (aHUS), C3 glomerulonephropathy (C3G) and immune complex-mediated membranoproliferative glomerulonephritis (IC-MPGN) may be associated with rare genetic variants. Here we describe gene variants in the Swedish and Norwegian populations. Methods Patients with these diagnoses (N=141) were referred for genetic screening. Sanger or next-generation sequencing were performed to identify genetic variants in 16 genes associated with these conditions. Nonsynonymous genetic variants are described when they have a minor allele frequency of <1% or were previously reported as being disease-associated. Results In patients with aHUS (n=94, one also had IC-MPGN) 68 different genetic variants or deletions were identified in 60 patients, of which 18 were novel. Thirty-two patients had more than one genetic variant. In patients with C3G (n=40) 29 genetic variants, deletions or duplications were identified in 15 patients, of which 9 were novel. Eight patients had more than one variant. In patients with IC-MPGN (n=7) five genetic variants were identified in five patients. Factor H variants were the most frequent in aHUS and C3 variants in C3G. Seventeen variants occurred in more than one condition. Conclusion Genetic screening of patients with aHUS, C3G and IC-MPGN is of paramount importance for diagnostics and treatment. In this study, we describe genetic assessment of Nordic patients in which 26 novel variants were found.
Collapse
Affiliation(s)
| | | | | | | | - Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Chen IR, Huang CC, Tu SJ, Wang GJ, Lai PC, Lee YT, Yen JC, Chang YS, Chang JG. Dysregulation of Immune Cell Subpopulations in Atypical Hemolytic Uremic Syndrome. Int J Mol Sci 2023; 24:10007. [PMID: 37373158 DOI: 10.3390/ijms241210007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a rare, life-threatening thrombotic microangiopathy. Definitive biomarkers for disease diagnosis and activity remain elusive, making the exploration of molecular markers paramount. We conducted single-cell sequencing on peripheral blood mononuclear cells from 13 aHUS patients, 3 unaffected family members of aHUS patients, and 4 healthy controls. We identified 32 distinct subpopulations encompassing 5 B-cell types, 16 T- and natural killer (NK) cell types, 7 monocyte types, and 4 other cell types. Notably, we observed a significant increase in intermediate monocytes in unstable aHUS patients. Subclustering analysis revealed seven elevated expression genes, including NEAT1, MT-ATP6, MT-CYB, VIM, ACTG1, RPL13, and KLRB1, in unstable aHUS patients, and four heightened expression genes, including RPS27, RPS4X, RPL23, and GZMH genes, in stable aHUS patients. Additionally, an increase in the expression of mitochondria-related genes suggested a potential influence of cell metabolism on the clinical progression of the disease. Pseudotime trajectory analysis revealed a unique immune cell differentiation pattern, while cell-cell interaction profiling highlighted distinctive signaling pathways among patients, family members, and controls. This single-cell sequencing study is the first to confirm immune cell dysregulation in aHUS pathogenesis, offering valuable insights into molecular mechanisms and potential new diagnostic and disease activity markers.
Collapse
Affiliation(s)
- I-Ru Chen
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Nephrology and the Kidney Institute, Department of Internal Medicine, China Medical University and Hospitals, Taichung 404332, Taiwan
| | - Chiu-Ching Huang
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Nephrology and the Kidney Institute, Department of Internal Medicine, China Medical University and Hospitals, Taichung 404332, Taiwan
| | - Siang-Jyun Tu
- Center for Precision Medicine, China Medical University Hospital, Taichung 404332, Taiwan
| | - Guei-Jane Wang
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
| | - Ping-Chin Lai
- Division of Nephrology and the Kidney Institute, Department of Internal Medicine, China Medical University and Hospitals, Taichung 404332, Taiwan
| | - Ya-Ting Lee
- Center for Precision Medicine, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 404332, Taiwan
| | - Ju-Chen Yen
- Center for Precision Medicine, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 404332, Taiwan
| | - Ya-Sian Chang
- Center for Precision Medicine, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 404332, Taiwan
| | - Jan-Gowth Chang
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan
- Center for Precision Medicine, China Medical University Hospital, Taichung 404332, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404332, Taiwan
- Epigenome Research Center, China Medical University Hospital, Taichung 404332, Taiwan
| |
Collapse
|
5
|
Will a hyperactive classical complement pathway exacerbate autoimmune diseases? Clin Exp Rheumatol 2023; 22:103241. [PMID: 36494043 DOI: 10.1016/j.autrev.2022.103241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/20/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
|
6
|
Schmidt CQ, Smith RJH. Protein therapeutics and their lessons: Expect the unexpected when inhibiting the multi-protein cascade of the complement system. Immunol Rev 2023; 313:376-401. [PMID: 36398537 PMCID: PMC9852015 DOI: 10.1111/imr.13164] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over a century after the discovery of the complement system, the first complement therapeutic was approved for the treatment of paroxysmal nocturnal hemoglobinuria (PNH). It was a long-acting monoclonal antibody (aka 5G1-1, 5G1.1, h5G1.1, and now known as eculizumab) that targets C5, specifically preventing the generation of C5a, a potent anaphylatoxin, and C5b, the first step in the eventual formation of membrane attack complex. The enormous clinical and financial success of eculizumab across four diseases (PNH, atypical hemolytic uremic syndrome (aHUS), myasthenia gravis (MG), and anti-aquaporin-4 (AQP4) antibody-positive neuromyelitis optica spectrum disorder (NMOSD)) has fueled a surge in complement therapeutics, especially targeting diseases with an underlying complement pathophysiology for which anti-C5 therapy is ineffective. Intensive research has also uncovered challenges that arise from C5 blockade. For example, PNH patients can still face extravascular hemolysis or pharmacodynamic breakthrough of complement suppression during complement-amplifying conditions. These "side" effects of a stoichiometric inhibitor like eculizumab were unexpected and are incompatible with some of our accepted knowledge of the complement cascade. And they are not unique to C5 inhibition. Indeed, "exceptions" to the rules of complement biology abound and have led to unprecedented and surprising insights. In this review, we will describe initial, present and future aspects of protein inhibitors of the complement cascade, highlighting unexpected findings that are redefining some of the mechanistic foundations upon which the complement cascade is organized.
Collapse
Affiliation(s)
- Christoph Q. Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Richard J. H. Smith
- Departments of Internal Medicine and Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Kuźniewska A, Thiel M, Kowalska D, Felberg-Miętka A, Szynkowski P, Ołdziej S, Arjona E, Jongerius I, Rodriguez de Córdoba S, Okrój M, Urban A. Substitutions at position 263 within the von Willebrand factor type A domain determine the functionality of complement C2 protein. Front Immunol 2022; 13:1061696. [PMID: 36591303 PMCID: PMC9797810 DOI: 10.3389/fimmu.2022.1061696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
The complement system is one of the first defense lines protecting from invading pathogens. However, it may turn offensive to the body's own cells and tissues when deregulated by the presence of rare genetic variants that impair physiological regulation and/or provoke abnormal activity of key enzymatic components. Factor B and complement C2 are examples of paralogs engaged in the alternative and classical/lectin complement pathway, respectively. Pathogenic mutations in the von Willebrand factor A domain (vWA) of FB have been known for years. Despite substantial homology between two proteins and the demonstration that certain substitutions in FB translated to C2 result in analogous phenotype, there was a limited number of reports on pathogenic C2 variants in patients. Recently, we studied a cohort of patients suffering from rare kidney diseases and confirmed the existence of two gain-of-function and three loss-of-function mutations within the C2 gene sequences coding for the vWA domain (amino acids 254-452) or nearly located unstructured region (243-253) of C2 protein. Herein, we report the functional consequences of amino acid substitution of glutamine at position 263. The p.Q263G variant resulted in the gain-of-function phenotype, similarly to a homologous mutation p.D279G in FB. Conversely, the p.Q263P variant found in a patient with C3 glomerulopathy resulted in the loss of C2 function. Our results confirm that the N-terminal part of the vWA domain is a hot spot crucial for the complement C2 function.
Collapse
Affiliation(s)
- Alicja Kuźniewska
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Marcel Thiel
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Daria Kowalska
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Felberg-Miętka
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Patryk Szynkowski
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Stanisław Ołdziej
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Emilia Arjona
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas and Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain
| | - Ilse Jongerius
- Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands,Department of Immunopathology, Sanquin Research, Landsteiner Laboratory, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Santiago Rodriguez de Córdoba
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas and Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain
| | - Marcin Okrój
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland,*Correspondence: Marcin Okrój,
| | - Aleksandra Urban
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland,Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
Sullivan KE. The yin and the yang of early classical pathway complement disorders. Clin Exp Immunol 2022; 209:151-160. [PMID: 35648651 PMCID: PMC9390844 DOI: 10.1093/cei/uxac056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
The classical pathway of the complement cascade has been recognized as a key activation arm, partnering with the lectin activation arm and the alternative pathway to cleave C3 and initiate the assembly of the terminal components. While deficiencies of classical pathway components have been recognized since 1966, only recently have gain-of-function variants been described for some of these proteins. Loss-of-function variants in C1, C4, and C2 are most often associated with lupus and systemic infections with encapsulated bacteria. C3 deficiency varies slightly from this phenotypic class with membranoproliferative glomerulonephritis and infection as the dominant phenotypes. The gain-of-function variants recently described for C1r and C1s lead to periodontal Ehlers Danlos syndrome, a surprisingly structural phenotype. Gain-of-function in C3 and C2 are associated with endothelial manifestations including hemolytic uremic syndrome and vasculitis with C2 gain-of-function variants thus far having been reported in patients with a C3 glomerulopathy. This review will discuss the loss-of-function and gain-of-function phenotypes and place them within the larger context of complement deficiencies.
Collapse
Affiliation(s)
- Kathleen E Sullivan
- Division of Allergy Immunology, The Children’s Hospital of Philadelphia, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
In Silico Designed Gain-of-Function Variants of Complement C2 Support Cytocidal Activity of Anticancer Monoclonal Antibodies. Cancers (Basel) 2022; 14:cancers14051270. [PMID: 35267578 PMCID: PMC8909654 DOI: 10.3390/cancers14051270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The molecular target for the classical complement pathway (CP) is defined by surface-bound immunoglobulins. Therefore, numerous anticancer monoclonal antibodies (mAbs) exploit the CP as their effector mechanism. Conversely, the alternative complement pathway (AP) is spontaneously induced on the host and microbial surfaces, but complement inhibitors on host cells prevent its downstream processing. Gain-of-function (GoF) mutations in the AP components that oppose physiological regulation directly predispose carriers to autoimmune/inflammatory diseases. Based on the homology between AP and CP components, we modified the CP component C2 so that it emulates the known pathogenic mutations in the AP component, factor B. By using tumor cell lines and patient-derived leukemic cells along with a set of clinically approved immunotherapeutics, we showed that the supplementation of serum with recombinant GoF C2 variants not only enhances the cytocidal effect of type I anti-CD20 mAbs rituximab and ofatumumab, but also lowers the threshold of mAbs necessary for the efficient lysis of tumor cells and efficiently exploits the leftovers of the drug accumulated in patients' sera after the previous infusion. Moreover, we demonstrate that GoF C2 acts in concert with other therapeutic mAbs, such as type II anti-CD20, anti-CD22, and anti-CD38 specimens, for overcoming cancer cells resistance to complement attack.
Collapse
|