1
|
Cabrera A, Mason E, Mullins LP, Sadarangani M. Antimicrobial resistance and vaccines in Enterobacteriaceae including extraintestinal pathogenic Escherichia coli and Klebsiella pneumoniae. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:34. [PMID: 40295787 PMCID: PMC12037890 DOI: 10.1038/s44259-025-00100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Antimicrobial-resistant Enterobacteriaceae are increasingly a clinical challenge. In particular, extraintestinal pathogenic Escherichia coli and Klebsiella pneumoniae threaten public health. Vaccination presents a long-term strategy to reduce both drug-susceptible and resistant infections while maintaining current clinical therapies. The review aims to emphasize the need for vaccines targeting extraintestinal pathogenic E. coli and K. pneumoniae by providing an overview of disease burden, antimicrobial resistance, therapeutics, and vaccine development.
Collapse
Affiliation(s)
- Adriana Cabrera
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Emily Mason
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Liam P Mullins
- Experimental Medicine Program, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Li J, Ju Y, Jiang M, Li S, Yang XY. Epitope-Based Vaccines: The Next Generation of Promising Vaccines Against Bacterial Infection. Vaccines (Basel) 2025; 13:248. [PMID: 40266107 PMCID: PMC11946261 DOI: 10.3390/vaccines13030248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/24/2025] Open
Abstract
The increasing resistance of bacteria to antibiotics has underscored the need for new drugs or vaccines to prevent bacterial infections. Reducing multidrug resistance is a key objective of the WHO's One Health initiative. Epitopes, the key parts of antigen molecules that determine their specificity, directly stimulate the body to produce specific humoral and/or cellular immune responses. Epitope-based vaccines, which combine dominant epitopes in a rational manner, induce a more efficient and specific immune response than the original antigen. While these vaccines face significant challenges, such as epitope escape or low immunogenicity, they offer advantages including minimal adverse reactions, improved efficacy, and optimized protection. As a result, epitope-based vaccines are considered a promising next-generation approach to combating bacterial infections. This review summarizes the latest advancements, challenges, and future prospects of epitope-based vaccines targeting bacteria, with a focus on their development workflow and application in antibiotic-resistant pathogens with high mortality rates, including Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. The goal of this review is to provide insights into next-generation vaccination strategies to combat bacterial infections associated with antibiotic resistance and high mortality rates.
Collapse
Affiliation(s)
| | | | | | | | - Xiao-Yan Yang
- School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China; (J.L.)
| |
Collapse
|
3
|
Zeng Y, Li T, Chen X, Fang X, Fang C, Liang X, Liu J, Yang Y. Oral administration of Lactobacillus plantarum expressing aCD11c modulates cellular immunity alleviating inflammatory injury due to Klebsiella pneumoniae infection. BMC Vet Res 2024; 20:399. [PMID: 39244529 PMCID: PMC11380324 DOI: 10.1186/s12917-024-04248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Klebsiella pneumoniae (KP), responsible for acute lung injury (ALI) and inflammation of the gastrointestinal tract, is a zoonotic pathogen that poses a threat to livestock farming worldwide. Nevertheless, there is currently no validated vaccine to prevent KP infection. The development of mucosal vaccines against KP using Lactobacillus plantarum (L. plantarum) is an effective strategy. RESULTS Firstly, the L. plantarum strains NC8-pSIP409-aCD11c' and NC8-pLc23-aCD11c were constructed via homologous recombination to express the aCD11c protein either inducibly or constitutively. Both NC8-pSIP409-aCD11c' and NC8-pLc23-aCD11c strains could enhance the adhesion and invasion of L. plantarum on bone marrow-derived dendritic cells (BMDCs), and stimulate the activation of BMDCs compared to the control strain NC8-pSIP409 in vitro. Following oral immunization of mice with NC8-pSIP409-aCD11c' and NC8-pLc23-aCD11c, the cellular, humoral, and mucosal immunity were significantly improved, as evidenced by the increased expression of CD4+ IL-4+ T cells in the spleen, IgG in serum, and secretory IgA (sIgA) in the intestinal lavage fluid (ILF). Furthermore, the protective effects of L. plantarum against inflammatory damage caused by KP infection were confirmed by assessing the bacterial loads in various tissues, lung wet/dry ratio (W/D), levels of inflammatory cytokines, and histological evaluation, which influenced T helper 17 (Th17) and regulatory T (Treg) cells in peripheral blood and lung. CONCLUSIONS Both the inducible and constitutive L. plantarum strains NC8-pSIP409-aCD11c' and NC8-pLc23-aCD11c have been found to stimulate cellular and humoral immunity levels and alleviate the inflammatory response caused by KP infection. These findings have provided a basis for the development of a novel vaccine against KP.
Collapse
Affiliation(s)
- Yang Zeng
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, China
| | - Tiantian Li
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, China
| | - Xueyang Chen
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, China
| | - Xiaowei Fang
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Chun Fang
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, China
| | - Xiongyan Liang
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, China
| | - Jing Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, China.
| | - Yuying Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
4
|
Panickar A, Manoharan A, Anbarasu A, Ramaiah S. Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs. Arch Microbiol 2024; 206:382. [PMID: 39153075 DOI: 10.1007/s00203-024-04107-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Respiratory tract infections (RTIs) have a significant impact on global health, especially among children and the elderly. The key bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus and non-fermenting Gram Negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa are most commonly associated with RTIs. These bacterial pathogens have evolved a diverse array of resistance mechanisms through horizontal gene transfer, often mediated by mobile genetic elements and environmental acquisition. Treatment failures are primarily due to antimicrobial resistance and inadequate bacterial engagement, which necessitates the development of alternative treatment strategies. To overcome this, our review mainly focuses on different virulence mechanisms and their resulting pathogenicity, highlighting different therapeutic interventions to combat resistance. To prevent the antimicrobial resistance crisis, we also focused on leveraging the application of artificial intelligence and machine learning to manage RTIs. Integrative approaches combining mechanistic insights are crucial for addressing the global challenge of antimicrobial resistance in respiratory infections.
Collapse
Affiliation(s)
- Avani Panickar
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Manoharan
- Infectious Diseases Medical and Scientific Affairs, GlaxoSmithKline (GSK), Worli, Maharashtra, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Assoni L, Couto AJM, Vieira B, Milani B, Lima AS, Converso TR, Darrieux M. Animal models of Klebsiella pneumoniae mucosal infections. Front Microbiol 2024; 15:1367422. [PMID: 38559342 PMCID: PMC10978692 DOI: 10.3389/fmicb.2024.1367422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Klebsiella pneumoniae is among the most relevant pathogens worldwide, causing high morbidity and mortality, which is worsened by the increasing rates of antibiotic resistance. It is a constituent of the host microbiota of different mucosa, that can invade and cause infections in many different sites. The development of new treatments and prophylaxis against this pathogen rely on animal models to identify potential targets and evaluate the efficacy and possible side effects of therapeutic agents or vaccines. However, the validity of data generated is highly dependable on choosing models that can adequately reproduce the hallmarks of human diseases. The present review summarizes the current knowledge on animal models used to investigate K. pneumoniae infections, with a focus on mucosal sites. The advantages and limitations of each model are discussed and compared; the applications, extrapolations to human subjects and future modifications that can improve the current techniques are also presented. While mice are the most widely used species in K. pneumoniae animal studies, they present limitations such as the natural resistance to the pathogen and difficulties in reproducing the main steps of human mucosal infections. Other models, such as Drosophila melanogaster (fruit fly), Caenorhabditis elegans, Galleria mellonella and Danio rerio (zebrafish), contribute to understanding specific aspects of the infection process, such as bacterial lethality and colonization and innate immune system response, however, they but do not present the immunological complexity of mammals. In conclusion, the choice of the animal model of K. pneumoniae infection will depend mainly on the questions being addressed by the study, while a better understanding of the interplay between bacterial virulence factors and animal host responses will provide a deeper comprehension of the disease process and aid in the development of effective preventive/therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michelle Darrieux
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
6
|
Bista PK, Pillai D, Narayanan SK. Characterization of Three New Outer Membrane Adhesion Proteins in Fusobacterium necrophorum. Microorganisms 2023; 11:2968. [PMID: 38138112 PMCID: PMC10745669 DOI: 10.3390/microorganisms11122968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Fusobacterium necrophorum, an anaerobic Gram-negative pathogen, causes necrotic cattle infections, impacting livestock health and the US feedlot industry. Antibiotic administration is the mainstay for treating F. necrophorum infections, although resistance hampers their effectiveness. Vaccination, especially targeting outer membrane proteins (OMPs) due to their antigenic properties and host specificity, offers an alternative to antibiotics. This study identified high-binding-affinity adhesion proteins from F. necrophorum using binding and pull-down assays with bovine adrenal gland endothelial cells (EJG). Four OMP candidates (17.5 kDa/OmpH, 22.7 kDa/OmpA, 66.3 kDa/cell surface protein (CSP), and a previously characterized 43 kDa OMP) were expressed as recombinant proteins and purified. Rabbit polyclonal antibodies to recombinant OMPs were generated, and their ability to inhibit bacterial binding in vitro was assessed. The results show that treatment with individual polyclonal antibodies against 43 kDa significantly inhibited bacterial adhesion, while other antibodies were less potent. However, combinations of two or more antibodies showed a more prominent inhibitory effect on host-cell adhesion. Thus, our findings suggest that the identified OMPs are involved in fusobacterial attachment to host cells and may have the potential to be leveraged in combination for vaccine development. Future in vivo studies are needed to validate their roles and test the feasibility of an OMP-based subunit vaccine against fusobacterial infections.
Collapse
Affiliation(s)
- Prabha K. Bista
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (P.K.B.); (D.P.)
| | - Deepti Pillai
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (P.K.B.); (D.P.)
- Indiana Animal Disease and Diagnostic Laboratory, Purdue University, West Lafayette, IN 47907, USA
| | - Sanjeev K. Narayanan
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA; (P.K.B.); (D.P.)
| |
Collapse
|
7
|
Mba IE, Sharndama HC, Anyaegbunam ZKG, Anekpo CC, Amadi BC, Morumda D, Doowuese Y, Ihezuo UJ, Chukwukelu JU, Okeke OP. Vaccine development for bacterial pathogens: Advances, challenges and prospects. Trop Med Int Health 2023; 28:275-299. [PMID: 36861882 DOI: 10.1111/tmi.13865] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The advent and use of antimicrobials have played a key role in treating potentially life-threatening infectious diseases, improving health, and saving the lives of millions of people worldwide. However, the emergence of multidrug resistant (MDR) pathogens has been a significant health challenge that has compromised the ability to prevent and treat a wide range of infectious diseases that were once treatable. Vaccines offer potential as a promising alternative to fight against antimicrobial resistance (AMR) infectious diseases. Vaccine technologies include reverse vaccinology, structural biology methods, nucleic acid (DNA and mRNA) vaccines, generalised modules for membrane antigens, bioconjugates/glycoconjugates, nanomaterials and several other emerging technological advances that are offering a potential breakthrough in the development of efficient vaccines against pathogens. This review covers the opportunities and advancements in vaccine discovery and development targeting bacterial pathogens. We reflect on the impact of the already-developed vaccines targeting bacterial pathogens and the potential of those currently under different stages of preclinical and clinical trials. More importantly, we critically and comprehensively analyse the challenges while highlighting the key indices for future vaccine prospects. Finally, the issues and concerns of AMR for low-income countries (sub-Saharan Africa) and the challenges with vaccine integration, discovery and development in this region are critically evaluated.
Collapse
Affiliation(s)
- Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | - Zikora Kizito Glory Anyaegbunam
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
| | - Chijioke Chinedu Anekpo
- Department of Ear Nose and Throat, College of Medicine, Enugu State University of Science and Technology, Enugu, Nigeria
| | - Ben Chibuzo Amadi
- Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka, Nigeria
| | - Daji Morumda
- Department of Microbiology, Federal University Wukari, Wukari, Taraba, Nigeria
| | - Yandev Doowuese
- Department of Microbiology, Federal University of Health Sciences, Otukpo, Nigeria
| | - Uchechi Justina Ihezuo
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
| | | | | |
Collapse
|
8
|
Dey S, Shahrear S, Afroj Zinnia M, Tajwar A, Islam ABMMK. Functional Annotation of Hypothetical Proteins From the Enterobacter cloacae B13 Strain and Its Association With Pathogenicity. Bioinform Biol Insights 2022; 16:11779322221115535. [PMID: 35958299 PMCID: PMC9358594 DOI: 10.1177/11779322221115535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022] Open
Abstract
Enterobacter cloacae B13 strain is a rod-shaped gram-negative bacterium that belongs to the Enterobacteriaceae family. It can cause respiratory and urinary tract infections, and is responsible for several outbreaks in hospitals. E. cloacae has become an important pathogen and an emerging global threat because of its opportunistic and multidrug resistant ability. However, little knowledge is present about a large portion of its proteins and functions. Therefore, functional annotation of the hypothetical proteins (HPs) can provide an improved understanding of this organism and its virulence activity. The workflow in the study included several bioinformatic tools which were utilized to characterize functions, family and domains, subcellular localization, physiochemical properties, and protein-protein interactions. The E. cloacae B13 strain has overall 604 HPs, among which 78 were functionally annotated with high confidence. Several proteins were identified as enzymes, regulatory, binding, and transmembrane proteins with essential functions. Furthermore, 23 HPs were predicted to be virulent factors. These virulent proteins are linked to pathogenesis with their contribution to biofilm formation, quorum sensing, 2-component signal transduction or secretion. Better knowledge about the HPs’ characteristics and functions will provide a greater overview of the proteome. Moreover, it will help against E. cloacae in neonatal intensive care unit (NICU) outbreaks and nosocomial infections.
Collapse
Affiliation(s)
- Supantha Dey
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Sazzad Shahrear
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Ahnaf Tajwar
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
9
|
A New Live Auxotrophic Vaccine Induces Cross-Protection against Klebsiella pneumoniae Infections in Mice. Vaccines (Basel) 2022; 10:vaccines10060953. [PMID: 35746561 PMCID: PMC9227041 DOI: 10.3390/vaccines10060953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
The development of a whole-cell vaccine from bacteria auxotrophic for D-amino acids present in the bacterial cell wall is considered a promising strategy for providing protection against bacterial infections. Here, we constructed a prototype vaccine, consisting of a glutamate racemase-deficient mutant, for preventing Klebsiella pneumoniae infections. The deletion mutant lacks the murI gene and requires exogenous addition of D-glutamate for growth. The results showed that the K. pneumoniae ΔmurI strain is attenuated and includes a favourable combination of antigens for inducing a robust immune response and conferring an adequate level of cross-protection against systemic infections caused by K. pneumoniae strains, including some hypervirulent serotypes with elevated production of capsule polysaccharide as well as multiresistant K. pneumoniae strains. The auxotroph also induced specific production of IL-17A and IFN-γ. The rapid elimination of the strain from the blood of mice without causing disease suggests a high level of safety for administration as a vaccine.
Collapse
|
10
|
The Outer Membrane Proteins and Their Synergy Triggered the Protective Effects against Pathogenic Escherichia coli. Microorganisms 2022; 10:microorganisms10050982. [PMID: 35630426 PMCID: PMC9143122 DOI: 10.3390/microorganisms10050982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Colibacillosis caused by pathogenic Escherichia coli (E. coli) is one of the most serious infectious diseases, causing an extensive burden on animal husbandry and the human healthcare system. Vaccination is one of the ideal ways to prevent E. coli infection. In this work, recombinant outer membrane protein A (rOmpA), outer membrane protein C (rOmpC) and BamA (rBamA) from E. coli O78 (CVCC CAU0768) were expressed in a prokaryotic expression system with the concentration of 1–2 mg/mL after purification. Considerable immune responses could be triggered in mice that were immunized with these recombinant proteins, high antibody titers, high total IgG level and various antibody isotypes were detected in antisera after booster immunizations. Moreover, mice immunized with several recombinant proteins in combination showed a higher survival rate with the challenge of homologous strain E. coli O78 and a more significant cross-protection effect against heterologous strain E. coli O157:H7 (CICC 21530) in vivo than those of immunized alone. The antisera from immunized mice showed high affinity to multiple strains of Escherichia, Shigella and Salmonella in vitro, indicating that recombinant outer membrane proteins from E. coli O78 had the potential to be developed into universal antigenic substances against not only E. coli but also a variety of Gram-negative bacteria. rOmpA was considered as the most immunogenic protein in this work and the combination of different proteins could further enhance the immune response of immunized mice, which provided the reference for the construction of novel antigens with higher efficiency.
Collapse
|