1
|
Jiang Y, Zhang J, Yu J, Luo W, Du Q, Liu W, Xu Q, Li X, Liu H, Huang D, Qin T. HDAC6 facilitates LUAD progression by inducing EMT and enhancing macrophage polarization towards the M2 phenotype. NPJ Precis Oncol 2025; 9:150. [PMID: 40404897 PMCID: PMC12098887 DOI: 10.1038/s41698-025-00949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 05/14/2025] [Indexed: 05/24/2025] Open
Abstract
Histone deacetylase 6 (HDAC6) plays a critical role in lung adenocarcinoma (LUAD) prognosis and the tumor immune microenvironment (TIME). This study, utilizing public datasets and experimental validation, revealed that HDAC6 is upregulated in LUAD, correlating with poor survival outcomes and an immunosuppressive TIME characterized by increased Tregs, CAFs, M2 macrophages, and MDSCs. HDAC6-high patients showed reduced immunotherapy response. HDAC6 knockout inhibited tumor growth, suppressed PI3K/AKT/mTOR signaling and EMT, and enhanced apoptosis and M1 macrophage recruitment. HDAC6 inhibition synergized with anti-PD-1 therapy, suggesting a potential combinatorial strategy for LUAD treatment. HDAC6 serves as a key prognostic marker and therapeutic target in LUAD.
Collapse
Affiliation(s)
- Yantao Jiang
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ju Zhang
- Department of Nuclear Medicine, Rizhao People's Hospital, Rizhao, China
| | - Junjie Yu
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wei Luo
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingwu Du
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenting Liu
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qi Xu
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xueyang Li
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Huiyan Liu
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dingzhi Huang
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Tingting Qin
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
2
|
Dagli MLZ, Nagamine MK, Ikeda TL, da Fonseca IIM, Kremer FS, Seixas FK, Hernandez CD, Leite JVP, Yasumaru CC, Massoco CO, Hsieh R, Lourenço SV, Collares TV. Identification of mutations in canine oral mucosal melanomas by exome sequencing and comparison with human melanomas. Sci Rep 2024; 14:24174. [PMID: 39406779 PMCID: PMC11480479 DOI: 10.1038/s41598-024-74748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Oral mucosal melanomas (OMMs) are aggressive neoplasms commonly found in dogs but rare in humans. Utilizing whole exome sequencing (WES), which focuses on protein-coding regions to reveal mutation profiles, we conducted a comparative analysis of canine OMM and human melanomas. This study involved DNA extraction, exome enrichment, and sequencing from three canine OMM cell lines (CMGD-2, CMGD-5, TLM-1), five canine OMM frozen samples, a human OMM cell line (MEMO), and a human commercial skin melanoma cell line (SK-MEL-28). The sequencing and subsequent analysis of FASTQ files yielded final variant files, leading to the identification of mutations. Our findings revealed a total of 500 mutated genes in canine OMM, including significant ones such as EP300, FAT4, JAK3, LRP1B, NCOR1, and NOTCH1. Notably, 82 shared mutations were identified between human melanomas and canine OMM genomes. These mutations were categorized based on the gene functions. The identification of these mutations provides critical insights that can pave the way for the development of novel therapeutic strategies for both canine and human OMM, offering hope for more effective treatments in the future.
Collapse
Affiliation(s)
- Maria Lucia Zaidan Dagli
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | - Márcia Kazumi Nagamine
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Tatícia Lieh Ikeda
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ivone Izabel Mackowiak da Fonseca
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - João Vitor Pereira Leite
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Cassia Correa Yasumaru
- Laboratory of Comparative Imuno-Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Cristina Oliveira Massoco
- Laboratory of Comparative Imuno-Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo Hsieh
- School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | | | - Tiago Veiras Collares
- Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
3
|
Zou J, Zhang Y, Pan Y, Mao Z, Chen X. Advancing nanotechnology for neoantigen-based cancer theranostics. Chem Soc Rev 2024; 53:3224-3252. [PMID: 38379286 DOI: 10.1039/d3cs00162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neoantigens play a pivotal role in the field of tumour therapy, encompassing the stimulation of anti-tumour immune response and the enhancement of tumour targeting capability. Nonetheless, numerous factors directly influence the effectiveness of neoantigens in bolstering anti-tumour immune responses, including neoantigen quantity and specificity, uptake rates by antigen-presenting cells (APCs), residence duration within the tumour microenvironment (TME), and their ability to facilitate the maturation of APCs for immune response activation. Nanotechnology assumes a significant role in several aspects, including facilitating neoantigen release, promoting neoantigen delivery to antigen-presenting cells, augmenting neoantigen uptake by dendritic cells, shielding neoantigens from protease degradation, and optimizing interactions between neoantigens and the immune system. Consequently, the development of nanotechnology synergistically enhances the efficacy of neoantigens in cancer theranostics. In this review, we provide an overview of neoantigen sources, the mechanisms of neoantigen-induced immune responses, and the evolution of precision neoantigen-based nanomedicine. This encompasses various therapeutic modalities, such as neoantigen-based immunotherapy, phototherapy, radiotherapy, chemotherapy, chemodynamic therapy, and other strategies tailored to augment precision in cancer therapeutics. We also discuss the current challenges and prospects in the application of neoantigen-based precision nanomedicine, aiming to expedite its clinical translation.
Collapse
Affiliation(s)
- Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yu Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yuanbo Pan
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumour of Zhejiang Province, Hangzhou, Zhejiang 310009, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
4
|
Du Q, Liu W, Mei T, Wang J, Qin T, Huang D. Prognostic and immunological characteristics of CDK1 in lung adenocarcinoma: A systematic analysis. Front Oncol 2023; 13:1128443. [PMID: 36950551 PMCID: PMC10025485 DOI: 10.3389/fonc.2023.1128443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/27/2023] [Indexed: 03/08/2023] Open
Abstract
Background Cyclin-dependent kinases (CDKs) play a key role in cell proliferation in lung adenocarcinoma (LUAD). Comprehensive analysis of CDKs to elucidate their clinical significance and interactions with the tumor immune microenvironment is needed. Methods RNA expression, somatic mutation, copy number variation, and single-cell RNA sequencing data were downloaded from public datasets. First, we comprehensively evaluated the expression profile and prognostic characteristics of 26 CDKs in LUAD, and CDK1 was selected as a candidate for further analysis. Then, a systematic analysis was performed to explore the relationships of CDK1 with clinical characteristics and tumor immune microenvironment factors in LUAD. Results CDK1 was markedly upregulated at both the mRNA and protein level in LUAD. Moreover, overexpression of CDK1 was related to poor clinical outcomes. CDK1 coexpressed genes were mainly involved in the cell cycle, the DNA repair process, and the p53 signaling pathway. In addition, CDK1 expression was found to be correlated with the expression of multiple immunomodulators and chemokines, which participate in activating and suppressing the immune microenvironment. CDK1 expression was also correlated with increased infiltration of numerous immune cells, including CD4+ T cells and M1 macrophages. Patients with high CDK1 expression tended to have a poor response to immunotherapy but were sensitive to multiple chemotherapies and targeted drugs. The MDK-NCL and SPP1-CD44 ligand-receptor pairs were markedly activated in the intercellular communication network. CDK1 was an independent prognostic factor for LUAD and improved the ability to predict overall survival when combined with tumor stage. Conclusion CDK1 plays an essential role in reshaping the tumor immune microenvironment and might be a prognostic and treatment biomarker in LUAD.
Collapse
|
5
|
Zhang D, Li Y, Du C, Sang L, Liu L, Li Y, Wang F, Fan W, Tang P, Zhang S, Chen D, Wang Y, Wang X, Xie X, Jiang Z, Song Y, Guo R. Evidence of pyroptosis and ferroptosis extensively involved in autoimmune diseases at the single-cell transcriptome level. J Transl Med 2022; 20:363. [PMID: 35962439 PMCID: PMC9373312 DOI: 10.1186/s12967-022-03566-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Approximately 8-9% of the world's population is affected by autoimmune diseases, and yet the mechanism of autoimmunity trigger is largely understudied. Two unique cell death modalities, ferroptosis and pyroptosis, provide a new perspective on the mechanisms leading to autoimmune diseases, and development of new treatment strategies. METHODS Using scRNA-seq datasets, the aberrant trend of ferroptosis and pyroptosis-related genes were analyzed in several representative autoimmune diseases (psoriasis, atopic dermatitis, vitiligo, multiple sclerosis, systemic sclerosis-associated interstitial lung disease, Crohn's disease, and experimental autoimmune orchitis). Cell line models were also assessed using bulk RNA-seq and qPCR. RESULTS A substantial difference was observed between normal and autoimmune disease samples involving ferroptosis and pyroptosis. In the present study, ferroptosis and pyroptosis showed an imbalance in different keratinocyte lineages of psoriatic skinin addition to a unique pyroptosis-sensitive keratinocyte subset in atopic dermatitis (AD) skin. The results also revealed that pyroptosis and ferroptosis are involved in epidermal melanocyte destruction in vitiligo. Aberrant ferroptosis has been detected in multiple sclerosis, systemic sclerosis-associated interstitial lung disease, Crohn's disease, and autoimmune orchitis. Cell line models adopted in the study also identified pro-inflammatory factors that can drive changes in ferroptosis and pyroptosis. CONCLUSION These results provide a unique perspective on the involvement of ferroptosis and pyroptosis in the pathological process of autoimmune diseases at the scRNA-seq level. IFN-γ is a critical inducer of pyroptosis sensitivity, and has been identified in two cell line models.
Collapse
Affiliation(s)
- Danfeng Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yadan Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Science, Henan Medical College of Zhengzhou University, Zhengzhou, Henan, China
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyan Du
- Laboratory Animal Center, School of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lina Sang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liu Liu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjuan Fan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ping Tang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Sidong Zhang
- Department of Pediatric Hematology and Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Chen
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanmei Wang
- Department of Hematology, Zhengzhou People's Hospital, Zhengzhou, Henan, China
| | - Xiaoyi Wang
- Department of Pediatric Hematology and Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Academy of Medical Science, Henan Medical College of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
The role of Th17 cells: explanation of relationship between periodontitis and COPD? Inflamm Res 2022; 71:1011-1024. [PMID: 35781342 DOI: 10.1007/s00011-022-01602-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/13/2022] [Indexed: 11/05/2022] Open
Abstract
Periodontitis and chronic obstructive pulmonary disease (COPD) are chronic inflammatory diseases with common risk factors, such as long-term smoking, age, and social deprivation. Many observational studies have shown that periodontitis and COPD are correlated. Moreover, they share a common pathophysiological process involving local accumulation of inflammatory cells and cytokines and damage of soft tissues. The T helper 17 (Th17) cells and the related cytokines, interleukin (IL)-17, IL-22, IL-1β, IL-6, IL-23, and transforming growth factor (TGF)-β, play a crucial regulatory role during the pathophysiological process. This paper reviewed the essential roles of Th17 lineage in the occurrence of periodontitis and COPD. The gaps in the study of their common pathological mechanism were also evaluated to explore future research directions. Therefore, this review can provide study direction for the association between periodontitis and COPD and new ideas for the clinical diagnosis and treatment of the two diseases.
Collapse
|
7
|
Makaremi S, Asgarzadeh A, Kianfar H, Mohammadnia A, Asghariazar V, Safarzadeh E. The role of IL-1 family of cytokines and receptors in pathogenesis of COVID-19. Inflamm Res 2022; 71:923-947. [PMID: 35751653 PMCID: PMC9243884 DOI: 10.1007/s00011-022-01596-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022] Open
Abstract
A global pandemic has erupted as a result of the new brand coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pandemic has been consociated with widespread mortality worldwide. The antiviral immune response is an imperative factor in confronting the recent coronavirus disease 2019 (COVID-19) infections. Meantime, cytokines recognize as crucial components in guiding the appropriate immune pathways in the restraining and eradication of the virus. Moreover, SARS-CoV-2 can induce uncontrolled inflammatory responses characterized by hyper-inflammatory cytokine production, which causes cytokine storm and acute respiratory distress syndrome (ARDS). As excessive inflammatory responses are contributed to the severe stage of the COVID-19 disease, therefore, the pro-inflammatory cytokines are regarded as the Achilles heel during COVID-19 infection. Among these cytokines, interleukin (IL-) 1 family cytokines (IL-1, IL-18, IL-33, IL-36, IL-37, and IL-38) appear to have a strong inflammatory role in severe COVID-19. Hence, understanding the underlying inflammatory mechanism of these cytokines during infection is critical for reducing the symptoms and severity of the disease. Here, the possible mechanisms and pathways involved in inflammatory immune responses are discussed.
Collapse
Affiliation(s)
- Shima Makaremi
- School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamed Kianfar
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Mohammadnia
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Health Information Management, School of Medicine and Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran. .,Department of Microbiology, Parasitology and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
8
|
Park BC, Jung S, Chen ST, Dewan AK, Johnson DB. Challenging Dermatologic Considerations Associated with Immune Checkpoint Inhibitors. Am J Clin Dermatol 2022; 23:707-717. [PMID: 35708849 DOI: 10.1007/s40257-022-00706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/25/2022]
Abstract
Immune checkpoint inhibitors have emerged as a new paradigm in oncologic care for many malignancies. However, nonspecific immune activation has led to "collateral damage" in the form of immune-related adverse events, with skin being a commonly affected organ. Cutaneous immune-related adverse events include a wide spectrum of clinical presentations and challenging considerations, often necessitating dermatology referral to support diagnosis and management, particularly for atypical presentations or more severe, cutaneous immune-related adverse events that may require specialized dermatologic evaluations including biopsy and histopathology. Close collaborations between oncologists and dermatologists may optimize clinical decision making in the following challenging management settings: non-steroidal therapies for corticosteroid-refractory, cutaneous immune-related adverse events, immune checkpoint inhibitor rechallenge, balancing cutaneous immune-related adverse events and treatments, and immune checkpoint inhibitors in patients with pre-existing autoimmune disease, skin conditions, and organ transplants. These complex clinical decisions that often lack rigorous data should be made in close collaboration with dermatologists to minimize unnecessary morbidity and mortality. This article provides a review of approaches to challenging dermatologic considerations associated with immune checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Benjamin C Park
- School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Seungyeon Jung
- School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Steven T Chen
- Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Anna K Dewan
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, 777 Preston Research Building, Nashville, TN, 3723, USA.
| |
Collapse
|
9
|
Yang X, Chen Y, Li M, Zhu W. ERBB3 methylation and immune infiltration in tumor microenvironment of cervical cancer. Sci Rep 2022; 12:8112. [PMID: 35581263 PMCID: PMC9114106 DOI: 10.1038/s41598-022-11415-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
ERBB3, a member of the ERBB family of receptor tyrosine kinases, plays an important role in cancer, despite its lack of intrinsic carcinogenic mechanism of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). Research on bioinformatics methods through multi-omics, this work proves that ERBB3 gene mutation, methylation modification have extensive regulatory mechanisms on the CESC microenvironment. We found that ERBB3 is involved in carcinogenesis of cervical cancer and is not associated with its prognosis. The carcinogenic mechanism is mainly related to the suppression of the immune system between tumor infiltrating lymphocytes (TILs) and the methylation of the RNA level. Our study indicated ERBB3 is more likely to be a carcinogenic factor than a key prognostic factor for cervical cancer. Methylation of ERBB3 may work as a checkpoint immunotherapy target in CESC, DNA methylation modification of the 4480 base pair downstream of ERBB3 transcription initiation site was the highest.
Collapse
Affiliation(s)
- Xiaoyue Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, Jiangsu, China.,Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Sanxiang Road 1055, Suzhou, 215000, Jiangsu, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Sanxiang Road 1055, Suzhou, 215000, Jiangsu, China
| | - Mei Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Jiefang Road 438, Zhenjiang, 212001, Jiangsu, China.
| | - Weipei Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Sanxiang Road 1055, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|