1
|
Maissan P, Carlberg C. Circadian Regulation of Vitamin D Target Genes Reveals a Network Shaped by Individual Responsiveness. Nutrients 2025; 17:1204. [PMID: 40218962 PMCID: PMC11990303 DOI: 10.3390/nu17071204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND In humans, vitamin D3 synthesis follows a day-night rhythm due to its UV-B-dependent production. RESULTS As part of the VitDHiD intervention study, we identified 87 in vivo vitamin D target genes with circadian expression patterns in immune cells, forming a regulatory network centered on transcription factors and membrane receptors. These genes exhibit a narrow basal expression range, with 80% downregulated upon vitamin D3 supplementation. Clustering analysis revealed six distinct gene groups, with the two most prominent clusters driven by the transcription factor CSRNP1 (cysteine- and serine-rich nuclear protein 1) and GAS7 (growth arrest-specific 7), a known differentiation inducer. Among the 25 VitDHiD study participants, we identified two subgroups distinguished by significant differences in the responsiveness of 14 in vivo vitamin D target genes. These genes encode transcription factors like CSRNP1, as well as metabolic enzymes and transporters, including NAMPT (nicotinamide phosphoribosyltransferase), PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3), and SLC2A3 (solute carrier family 2 member 3). Notably, all 14 genes possess a vitamin D receptor-binding enhancer within a reasonable distance of their transcription start site. CONCLUSIONS These findings highlight a novel link between vitamin D signaling and circadian gene regulation, with potential implications for personalized supplementation strategies.
Collapse
Affiliation(s)
| | - Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-683 Olsztyn, Poland;
| |
Collapse
|
2
|
Ghosh Dastidar R, Jaroslawska J, Malinen M, Tuomainen TP, Virtanen JK, Bendik I, Carlberg C. In vivo vitamin D targets reveal the upregulation of focal adhesion-related genes in primary immune cells of healthy individuals. Sci Rep 2024; 14:17552. [PMID: 39080417 PMCID: PMC11289414 DOI: 10.1038/s41598-024-68741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Vitamin D modulates innate and adaptive immunity, the molecular mechanisms of which we aim to understand under human in vivo conditions. Therefore, we designed the study VitDHiD (NCT03537027) as a human investigation, in which 25 healthy individuals were supplemented with a single vitamin D3 bolus (80,000 IU). Transcriptome-wide differential gene expression analysis of peripheral blood mononuclear cells (PBMCs), which were isolated directly before and 24 h after supplementation, identified 452 genes significantly (FDR < 0.05) responding to vitamin D. In vitro studies using PBMCs from the same individuals confirmed 138 of these genes as targets of 1α,25-dihydroxyvitamin D3. A subset of the 91 most regulated in vivo vitamin D target genes indicated focal adhesion as the major pathway being upregulated by vitamin D3 supplementation of healthy individuals. Differences in the individual-specific responsiveness of in vivo vitamin D target genes in relation to the increase of the person's vitamin D status allowed a segregation of the VitDHiD participants into 9 high, 12 mid and 4 low responders. The expression profile of nearly 600 genes elucidate the difference between high and low vitamin D responders, the most prominent of which is the HLA-C (major histocompatibility complex, class I, C) gene.
Collapse
Affiliation(s)
- Ranjini Ghosh Dastidar
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Ul. J. Tuwima 10, 10-748, Olsztyn, Poland
| | - Julia Jaroslawska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Ul. J. Tuwima 10, 10-748, Olsztyn, Poland
| | - Marjo Malinen
- Department of Forestry and Environmental Engineering, South-Eastern Finland University of Applied Sciences, Kouvola, Finland
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Igor Bendik
- dsm-Firmenich AG, Health, Nutrition and Care (HNC), Kaiseraugst, Switzerland
| | - Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Ul. J. Tuwima 10, 10-748, Olsztyn, Poland.
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
3
|
Jaroslawska J, Ghosh Dastidar R, Carlberg C. In vivo vitamin D target genes interconnect key signaling pathways of innate immunity. PLoS One 2024; 19:e0306426. [PMID: 39042613 PMCID: PMC11265685 DOI: 10.1371/journal.pone.0306426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/16/2024] [Indexed: 07/25/2024] Open
Abstract
The vitamin D3 metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), its nuclear receptor VDR (vitamin D receptor) and hundreds of their target genes are not only key regulators of calcium homeostasis, but also important modulators of the immune system. Innate immune cells like monocytes use VDR for efficient differentiation and are very responsive to vitamin D. So far, most information on the gene regulatory function of vitamin D and its physiological impact had been obtained from in vitro studies using supraphysiological doses of 1,25(OH)2D3. Therefore, medical experiments like the study VitDHiD (NCT03537027), where 25 healthy individuals were supplemented once with a vitamin D3 bolus (80,000 IU), provide important insight into the response to vitamin D under in vivo conditions. In this study, we inspected 452 in vivo vitamin D target genes from peripheral blood mononuclear cells (PBMCs) detected in VitDHiD and found 61 of them involved in eight major KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways of innate immunity. Under in vivo conditions in healthy individuals vitamin D either silences five pathways of innate immunity, stabilizes two and increases one, so that acute inflammation is suppressed and the release of cytokines is kept under control. A ranking of the 61 target genes by inducibility, basal expression and multiple involvements in the pathways highlighted the genes NFKBIA (NFκB inhibitor alpha), NFKBIZ, FOSL2 (FOS like 2, AP1 transcription factor subunit), JDP2 (Jun dimerization protein 2), PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1), CLEC7A (C-type lectin domain containing 7A), DUSP6 (dual specificity phosphatase 6), NCF2 (neutrophil cytosolic factor 2), PLCB1 (phospholipase C beta 1), PLCG2 and TNFAIP3 (TNF alpha induced protein 3). In conclusion, vitamin D's in vivo effect on innate immunity in healthy adults is mediated by the interconnection of the pathways of neutrophil extracellular trap formation, Toll-like receptor, chemokine and phagosome signaling, NOD-like receptor, C-type lectin receptor, apoptosis and interleukin 17 through a limited set of proteins encoded by key target genes.
Collapse
Affiliation(s)
- Julia Jaroslawska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Ranjini Ghosh Dastidar
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Hayes CE, Astier AL, Lincoln MR. Vitamin D mechanisms of protection in multiple sclerosis. FELDMAN AND PIKE'S VITAMIN D 2024:1129-1166. [DOI: 10.1016/b978-0-323-91338-6.00051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Carlberg C, Mycko MP. Linking Mechanisms of Vitamin D Signaling with Multiple Sclerosis. Cells 2023; 12:2391. [PMID: 37830605 PMCID: PMC10571821 DOI: 10.3390/cells12192391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Environmental triggers often work via signal transduction cascades that modulate the epigenome and transcriptome of cell types involved in the disease process. Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system being characterized by a combination of recurring inflammation, demyelination and progressive loss of axons. The mechanisms of MS onset are not fully understood and genetic variants may explain only some 20% of the disease susceptibility. From the environmental factors being involved in disease development low vitamin D levels have been shown to significantly contribute to MS susceptibility. The pro-hormone vitamin D3 acts via its metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) as a high affinity ligand to the transcription factor VDR (vitamin D receptor) and is a potent modulator of the epigenome at thousands of genomic regions and the transcriptome of hundreds of genes. A major target tissue of the effects of 1,25(OH)2D3 and VDR are cells of innate and adaptive immunity, such as monocytes, dendritic cells as well as B and T cells. Vitamin D induces immunological tolerance in T cells and reduces inflammatory reactions of various types of immune cells, all of which are implicated in MS pathogenesis. The immunomodulatory effects of 1,25(OH)2D3 contribute to the prevention of MS. However, the strength of the responses to vitamin D3 supplementation is highly variegated between individuals. This review will relate mechanisms of individual's vitamin D responsiveness to MS susceptibility and discuss the prospect of vitamin D3 supplementation as a way to extinguish the autoimmunity in MS.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Marcin P. Mycko
- Department of Neurology, Laboratory of Neuroimmunology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland;
| |
Collapse
|
6
|
Carlberg C, Raczyk M, Zawrotna N. Vitamin D: A master example of nutrigenomics. Redox Biol 2023; 62:102695. [PMID: 37043983 PMCID: PMC10119805 DOI: 10.1016/j.redox.2023.102695] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Nutrigenomics attempts to characterize and integrate the relation between dietary molecules and gene expression on a genome-wide level. One of the biologically active nutritional compounds is vitamin D3, which activates via its metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) the nuclear receptor VDR (vitamin D receptor). Vitamin D3 can be synthesized endogenously in our skin, but since we spend long times indoors and often live at higher latitudes where for many winter months UV-B radiation is too low, it became a true vitamin. The ligand-inducible transcription factor VDR is expressed in the majority of human tissues and cell types, where it modulates the epigenome at thousands of genomic sites. In a tissue-specific fashion this results in the up- and downregulation of primary vitamin D target genes, some of which are involved in attenuating oxidative stress. Vitamin D affects a wide range of physiological functions including the control of metabolism, bone formation and immunity. In this review, we will discuss how the epigenome- and transcriptome-wide effects of 1,25(OH)2D3 and its receptor VDR serve as a master example in nutrigenomics. In this context, we will outline the basis of a mechanistic understanding for personalized nutrition with vitamin D3.
Collapse
|
7
|
Carlberg C. A Pleiotropic Nuclear Hormone Labelled Hundred Years Ago Vitamin D. Nutrients 2022; 15:171. [PMID: 36615828 PMCID: PMC9823827 DOI: 10.3390/nu15010171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023] Open
Abstract
This year we are celebrating 100 years of the naming of vitamin D, but the molecule is, in fact, more than one billion years old [...].
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, PL-10-748 Olsztyn, Poland;
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The aim of this study is to highlight the epigenomic programming properties of nutritional molecules and their metabolites in human tissues and cell types. RECENT FINDINGS Chromatin is the physical expression of the epigenome and has a memory function on the level of DNA methylation, histone modification and 3-dimensional (3D) organization. This epigenetic memory does not only affect transient gene expression but also represents long-lasting decisions on cellular fate. The memory is based on an epigenetic programming process, which is directed by extracellular and intracellular signals that are sensed by transcription factors and chromatin modifiers. Many dietary molecules and their intermediary metabolites serve as such signals, that is they contribute to epigenetic programming and memory. In this context, we will discuss about molecules of intermediary energy metabolism affecting chromatin modifier actions, nutrition-triggered epigenetic memory in pre- and postnatal phases of life; and epigenetic programming of immune cells by vitamin D. These mechanisms explain some of the susceptibility for complex diseases, such as the metabolic syndrome, cancer and immune disorders. SUMMARY The observation that nutritional molecules are able to modulate the epigenome initiated the new nutrigenomic subdiscipline nutritional epigenetics. The concept that epigenetic memory and programming is directed by our diet has numerous implications for the interpretation of disease risk including their prevention.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Eunike Velleuer
- Department for Cytopathology, Heinrich-Heine-University Düsseldorf, Düsseldorf
- Department for Pediatric Hemato-Oncology, Helios Children's Hospital, Krefeld, Germany
| |
Collapse
|
9
|
Karonova TL, Rudenco EV, Radaeva OA, Chernikova AT, Golovatyuk KA, Shlyakhto EV. Vitamin D status during the COVID-19 pandemic: the experience of Russia and Belarus. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF BELARUS, MEDICAL SERIES 2022; 19:424-432. [DOI: 10.29235/1814-6023-2022-19-4-424-432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
During the COVID-19 pandemic, a high prevalence of vitamin D deficiency and insufficiency remains. Thus, the studies carried out on the territory of the Russian Federation (RF) and the Republic of Belarus over the last 3 years have shown the prevalence of vitamin D deficiency and insufficiency in the population, regardless of the gender of examined persons, the geographic location and the season of the year. Taking into account the known immunomodulatory functions of serum 25(OH)D, the aim of this review was to assess the data that were accumulated in the world, Russia and Belarus and were concerned with a possible contribution of vitamin D deficiency to COVID-19 infection, course and prognosis, as well as with the role of cholecalciferol therapy in prevention and treatment of the disease. Most of the studies demonstrate a negative association between the serum 25(OH)D level and COVID-19 severity and/or mortality. Previously, it has been shown that the serum 25(OH)D level less than 11.4 ng/ml is associated with an increased risk of COVID-19 mortality. At the same time, the results of the studies using cholecalciferol therapy for COVID-19 prevention and treatment are conflicting. Intervention studies in the Russian Federation and the Republic of Belarus are scanty; however, the available data indicate a possible benefit of therapy, which allows it to be considered as an addition to the main methods of treating COVID-19.
Collapse
Affiliation(s)
| | - E. V. Rudenco
- Belarusian Medical Academy of Postgraduate Education
| | | | | | | | | |
Collapse
|
10
|
A Single Vitamin D3 Bolus Supplementation Improves Vitamin D Status and Reduces Proinflammatory Cytokines in Healthy Females. Nutrients 2022; 14:nu14193963. [PMID: 36235615 PMCID: PMC9570631 DOI: 10.3390/nu14193963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Vitamin D deficiency is a global health problem that not only leads to metabolic bone disease but also to many other illnesses, most of which are associated with chronic inflammation. Thus, our aim was to investigate the safety and effectiveness of a single high dose of vitamin D3 (80,000 IU) on vitamin D status and proinflammatory cytokines such as interleukin (IL)6, IL8 and tumor necrosis factor (TNF) in healthy Saudi females. Fifty healthy females were recruited and orally supplemented with a single vitamin D3 bolus (80,000 IU). All participants donated fasting blood samples at baseline, one day and thirty days after supplementation. Serum 25-hydroxyvitamin D3 (25(OH)D3), IL6, IL8, TNF, calcium, phosphate, parathyroid hormone (PTH) and blood lipid levels were determined. Serum 25(OH)D3 significantly increased one and thirty days after supplementation when compared with baseline without causing elevation in calcium or phosphate or a decrease in PTH to abnormal levels. In contrast, the concentrations of the three representative proinflammatory cytokines decreased gradually until the end of the study period. In conclusion, a single high dose (80,000 IU) is effective in improving serum vitamin D status and reducing the concentration of the proinflammatory cytokines in a rapid and safe way in healthy females.
Collapse
|
11
|
Hanel A, Veldhuizen C, Carlberg C. Gene-Regulatory Potential of 25-Hydroxyvitamin D3 and D2. Front Nutr 2022; 9:910601. [PMID: 35911100 PMCID: PMC9330572 DOI: 10.3389/fnut.2022.910601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Human peripheral blood mononuclear cells (PBMCs) represent a highly responsive primary tissue that is composed of innate and adaptive immune cells. In this study, we compared modulation of the transcriptome of PBMCs by the vitamin D metabolites 25-hydroxyvitamin D3 (25(OH)D3), 25(OH)D2 and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Saturating concentrations of 1,25(OH)2D3, 25(OH)D3 and 25(OH)D2 resulted after 24 h stimulation in a comparable number and identity of target genes, but below 250 nM 25(OH)D3 and 25(OH)D2 were largely insufficient to affect the transcriptome. The average EC50 values of 206 common target genes were 322 nM for 25(OH)D3 and 295 nM for 25(OH)D2 being some 600-fold higher than 0.48 nM for 1,25(OH)2D3. The type of target gene, such as primary/secondary, direct/indirect or up-/down-regulated, had no significant effect on vitamin D metabolite sensitivity, but individual genes could be classified into high, mid and lower responders. Since the 1α-hydroxylase CYP27B1 is very low expressed in PBMCs and early (4 and 8 h) transcriptome responses to 25(OH)D3 and 25(OH)D2 were as prominent as to 1,25(OH)2D3, both vitamin D metabolites may directly control gene expression. In conclusion, at supra-physiological concentrations 25(OH)D3 and 25(OH)D2 are equally potent in modulating the transcriptome of PBMCs possibly by directly activating the vitamin D receptor.
Collapse
Affiliation(s)
- Andrea Hanel
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | | | - Carsten Carlberg
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- *Correspondence: Carsten Carlberg
| |
Collapse
|
12
|
Time-Resolved Gene Expression Analysis Monitors the Regulation of Inflammatory Mediators and Attenuation of Adaptive Immune Response by Vitamin D. Int J Mol Sci 2022; 23:ijms23020911. [PMID: 35055093 PMCID: PMC8776203 DOI: 10.3390/ijms23020911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 02/08/2023] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) belong to the innate and adaptive immune system and are highly sensitive and responsive to changes in their systemic environment. In this study, we focused on the time course of transcriptional changes in freshly isolated human PBMCs 4, 8, 24 and 48 h after onset of stimulation with the active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Taking all four time points together, 662 target genes were identified and segregated either by time of differential gene expression into 179 primary and 483 secondary targets or by driver of expression change into 293 direct and 369 indirect targets. The latter classification revealed that more than 50% of target genes were primarily driven by the cells' response to ex vivo exposure than by the nuclear hormone and largely explained its down-regulatory effect. Functional analysis indicated vitamin D's role in the suppression of the inflammatory and adaptive immune response by down-regulating ten major histocompatibility complex class II genes, five alarmins of the S100 calcium binding protein A family and by affecting six chemokines of the C-X-C motif ligand family. Taken together, studying time-resolved responses allows to better contextualize the effects of vitamin D on the immune system.
Collapse
|
13
|
Vitamin D and Pigmented Skin. Nutrients 2022; 14:nu14020325. [PMID: 35057504 PMCID: PMC8781604 DOI: 10.3390/nu14020325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 12/29/2021] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
The default supply of vitamin D3 to humans is its endogenous production in UV-B-exposed skin [...].
Collapse
|