1
|
Morita A, Okubo Y, Imafuku S, Terui T. Spesolimab, the first-in-class anti-IL-36R antibody: From bench to clinic. J Dermatol 2024; 51:1379-1391. [PMID: 39373152 DOI: 10.1111/1346-8138.17449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 10/08/2024]
Abstract
Inflammatory diseases that are driven by several pro-inflammatory cytokines has resulted in in the development of targeted therapies across different disease settings. Interleukin (IL)-36 cytokines have been implicated in several inflammatory diseases. In this review we describe the scientific evidence surrounding the use of the IL-36 receptor (IL-36R)-targeting antibody, spesolimab, in IL-36-mediated skin diseases: generalized pustular psoriasis (GPP), palmoplantar pustulosis (PPP), hidradenitis suppurativa, and Netherton syndrome (NS). Spesolimab, a high affinity, specific, humanized, antagonistic immunoglobulin G1 antibody, targets the IL-36R at a binding site distinct from its agonists, IL-36α/β/γ, and at least one endogenous antagonist, IL-36R antagonist. In vitro and in vivo data for spesolimab show effective inhibition of IL-36R-mediated signaling pathways, and six Phase I studies in healthy volunteers presented a favorable safety and pharmacokinetic (PK) profile, leading to the development of a clinical trial program to evaluate spesolimab in the treatment of IL-36R-mediated diseases. Six studies (including an expanded access program) have evaluated the efficacy, safety, PKs, and pharmacogenomics of spesolimab in patients with GPP flares. Spesolimab treatment of GPP flares resulted in rapid and sustained improvements in pustular and skin clearance, and clinically significant improvements in patient-reported symptoms and quality of life. Spesolimab also significantly reduces the risk of GPP flares and flare occurrence, preventing disease worsening and has a favorable safety profile. There have been three trials of spesolimab in PPP; further evaluation is needed to better define those patients who might benefit from the treatment. A trial of spesolimab in NS is ongoing, while other spesolimab trials suggest that IL-36 may only play a secondary role in the pathogenesis of atopic dermatitis. In conclusion, research into spesolimab has provided much needed insight into the role of IL-36 in the human immune system and the mechanism behind IL-36-mediated inflammatory diseases. Spesolimab provides an efficacious targeted treatment for GPP, a disease with a high unmet medical need.
Collapse
Affiliation(s)
- Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yukari Okubo
- Department of Dermatology, Tokyo Medical University, Tokyo, Japan
| | - Shinichi Imafuku
- Department of Dermatology, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Tadashi Terui
- Division of Cutaneous Science, Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Sugiura K, Fujita H, Komine M, Yamanaka K, Akiyama M. The role of interleukin-36 in health and disease states. J Eur Acad Dermatol Venereol 2024; 38:1910-1925. [PMID: 38779986 DOI: 10.1111/jdv.19935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/29/2024] [Indexed: 05/25/2024]
Abstract
The interleukin (IL)-1 superfamily upregulates immune responses and maintains homeostasis between the innate and adaptive immune systems. Within the IL-1 superfamily, IL-36 plays a pivotal role in both innate and adaptive immune responses. Of the four IL-36 isoforms, three have agonist activity (IL-36α, IL-36β, IL-36γ) and the fourth has antagonist activity (IL-36 receptor antagonist [IL-36Ra]). All IL-36 isoforms bind to the IL-36 receptor (IL-36R). Binding of IL-36α/β/γ to the IL-36R recruits the IL-1 receptor accessory protein (IL-1RAcP) and activates downstream signalling pathways mediated by nuclear transcription factor kappa B and mitogen-activated protein kinase signalling pathways. Antagonist binding of IL-36Ra to IL-36R inhibits recruitment of IL-1RAcP, blocking downstream signalling pathways. Changes in the balance within the IL-36 cytokine family can lead to uncontrolled inflammatory responses throughout the body. As such, IL-36 has been implicated in numerous inflammatory diseases, notably a type of pustular psoriasis called generalized pustular psoriasis (GPP), a chronic, rare, potentially life-threatening, multisystemic skin disease characterised by recurrent fever and extensive sterile pustules. In GPP, IL-36 is central to disease pathogenesis, and the prevention of IL-36-mediated signalling can improve clinical outcomes. In this review, we summarize the literature describing the biological functions of the IL-36 pathway. We also consider the evidence for uncontrolled activation of the IL-36 pathway in a wide range of skin (e.g., plaque psoriasis, pustular psoriasis, hidradenitis suppurativa, acne, Netherton syndrome, atopic dermatitis and pyoderma gangrenosum), lung (e.g., idiopathic pulmonary fibrosis), gut (e.g., intestinal fibrosis, inflammatory bowel disease and Hirschsprung's disease), kidney (e.g., renal tubulointerstitial lesions) and infectious diseases caused by a variety of pathogens (e.g., COVID-19; Mycobacterium tuberculosis, Pseudomonas aeruginosa, Streptococcus pneumoniae infections), as well as in cancer. We also consider how targeting the IL-36 signalling pathway could be used in treating inflammatory disease states.
Collapse
Affiliation(s)
- Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hideki Fujita
- Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Mayumi Komine
- Department of Dermatology, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Keiichi Yamanaka
- Department of Dermatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Keller J, O' Siorain JR, Kündig TM, Mellett M. Molecular aspects of Interleukin-36 cytokine activation and regulation. Biochem Soc Trans 2024; 52:1591-1604. [PMID: 38940747 DOI: 10.1042/bst20230548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Interleukin-36 (IL-36) cytokines are structurally similar to other Interleukin-1 superfamily members and are essential to convey inflammatory responses at epithelial barriers including the skin, lung, and gut. Due to their potent effects on immune cells, IL-36 cytokine activation is regulated on multiple levels, from expression and activation to receptor binding. Different IL-36 isoforms convey specific responses as a consequence of particular danger- or pathogen-associated molecular patterns. IL-36 expression and activation are regulated by exogenous pathogens, including fungi, viruses and bacteria but also by endogenous factors such as antimicrobial peptides or cytokines. Processing of IL-36 into potent bioactive forms is necessary for host protection but can elevate tissue damage. Indeed, exacerbated IL-36 signalling and hyperactivation are linked to the pathogenesis of diseases such as plaque and pustular psoriasis, emphasising the importance of understanding the molecular aspects regulating IL-36 activation. Here, we summarise facets of the electrochemical properties, regulation of extracellular cleavage by various proteases and receptor signalling of the pro-inflammatory and anti-inflammatory IL-36 family members. Additionally, this intriguing cytokine subfamily displays many characteristics that are unique from prototypical members of the IL-1 family and these key distinctions are outlined here.
Collapse
Affiliation(s)
- Jennifer Keller
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Science, University of Zürich, 8091 Zürich, Switzerland
| | - James R O' Siorain
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| | - Mark Mellett
- Department of Dermatology, University Hospital Zürich (USZ), University of Zürich (UZH), Raemistrasse 100, 8091 Zürich, Switzerland
- Faculty of Medicine, University of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
4
|
Cecrdlova E, Krupickova L, Fialova M, Novotny M, Tichanek F, Svachova V, Mezerova K, Viklicky O, Striz I. Insights into IL-1 family cytokines in kidney allograft transplantation: IL-18BP and free IL-18 as emerging biomarkers. Cytokine 2024; 180:156660. [PMID: 38801805 DOI: 10.1016/j.cyto.2024.156660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/15/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Proinflammatory cytokines and their inhibitors are involved in the regulation of multiple immune reactions including response to transplanted organs. In this prospective study, we evaluated changes in serum concentrations of six IL-1 family cytokines (IL-1 alpha, IL-1 beta, IL-1RA, IL-18, IL-18BP, and IL-36 beta) in 138 kidney allograft recipients and 48 healthy donors. Samples were collected before transplantation and then after one week, three months and one year, additional sera were obtained at the day of biopsy positive for acute rejection. We have shown, that concentrations of proinflammatory members of the IL-1 family (IL-1β, IL-18, IL-36 β) and anti-inflammatory IL-18BP decreased immediately after the transplantation. The decline of serum IL-1RA and IL-1α was not observed in subjects with acute rejection. IL-18, including specifically its free form, is the only cytokine which increase serum concentrations in the period between one week and three months in both groups of patients without upregulation of its inhibitor, IL-18BP. Serum concentrations of calculated free IL-18 were upregulated in the acute rejection group at the time of acute rejection. We conclude that IL-1 family cytokines are involved mainly in early phases of the response to kidney allograft. Serum concentrations of free IL-18 and IL-18BP represent possible biomarkers of acute rejection, and targeting IL-18 might be of therapeutic value.
Collapse
Affiliation(s)
- E Cecrdlova
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic
| | - L Krupickova
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic
| | - M Fialova
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic
| | - M Novotny
- Institute for Clinical and Experimental Medicine, Transplant Center, Department of Nephrology, Prague, Czech Republic
| | - F Tichanek
- Institute for Clinical and Experimental Medicine, Department of Data Science, Prague, Czech Republic
| | - V Svachova
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic
| | - K Mezerova
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic
| | - O Viklicky
- Institute for Clinical and Experimental Medicine, Transplant Center, Department of Nephrology, Prague, Czech Republic
| | - I Striz
- Institute for Clinical and Experimental Medicine, Department of Clinical and Transplant Immunology, Prague, Czech Republic.
| |
Collapse
|
5
|
Kappler U, Henningham A, Nasreen M, Yamamoto A, Buultjens AH, Stinear TP, Sly P, Fantino E. Tolerance to Haemophilus influenzae infection in human epithelial cells: Insights from a primary cell-based model. PLoS Pathog 2024; 20:e1012282. [PMID: 38990812 PMCID: PMC11239077 DOI: 10.1371/journal.ppat.1012282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/22/2024] [Indexed: 07/13/2024] Open
Abstract
Haemophilus influenzae is a human respiratory pathogen and inhabits the human respiratory tract as its only niche. Despite this, the molecular mechanisms that allow H. influenzae to establish persistent infections of human epithelia are not well understood. Here, we have investigated how H. influenzae adapts to the host environment and triggers the host immune response using a human primary cell-based infection model that closely resembles human nasal epithelia (NHNE). Physiological assays combined with dualRNAseq revealed that NHNE from five healthy donors all responded to H. influenzae infection with an initial, 'unproductive' inflammatory response that included a strong hypoxia signature but did not produce pro-inflammatory cytokines. Subsequently, an apparent tolerance to large extracellular and intraepithelial burdens of H. influenzae developed, with NHNE transcriptional profiles resembling the pre-infection state. This occurred in parallel with the development of intraepithelial bacterial populations, and appears to involve interruption of NFκB signalling. This is the first time that large-scale, persistence-promoting immunomodulatory effects of H. influenzae during infection have been observed, and we were able to demonstrate that only infections with live, but not heat-killed H. influenzae led to immunomodulation and reduced expression of NFκB-controlled cytokines such as IL-1β, IL-36γ and TNFα. Interestingly, NHNE were able to re-activate pro-inflammatory responses towards the end of the 14-day infection, resulting in release of IL-8 and TNFα. In addition to providing first molecular insights into mechanisms enabling persistence of H. influenzae in the host, our data further indicate the presence of infection stage-specific gene expression modules, highlighting fundamental similarities between immune responses in NHNE and canonical immune cells, which merit further investigation.
Collapse
Affiliation(s)
- Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Anna Henningham
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Marufa Nasreen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Ayaho Yamamoto
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Andrew H. Buultjens
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Peter Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Emmanuelle Fantino
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| |
Collapse
|
6
|
Cao Z, Li Q, Li Y, Wu J. Identification of plasma protein markers of allergic disease risk: a mendelian randomization approach to proteomic analysis. BMC Genomics 2024; 25:503. [PMID: 38773393 PMCID: PMC11110418 DOI: 10.1186/s12864-024-10412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND While numerous allergy-related biomarkers and targeted treatment strategies have been developed and employed, there are still signifcant limitations and challenges in the early diagnosis and targeted treatment for allegic diseases. Our study aims to identify circulating proteins causally associated with allergic disease-related traits through Mendelian randomization (MR)-based analytical framework. METHODS Large-scale cis-MR was employed to estimate the effects of thousands of plasma proteins on five main allergic diseases. Additional analyses including MR Steiger analyzing and Bayesian colocalisation, were performed to test the robustness of the associations; These findings were further validated utilizing meta-analytical methods in the replication analysis. Both proteome- and transcriptome-wide association studies approach was applied, and then, a protein-protein interaction was conducted to examine the interplay between the identified proteins and the targets of existing medications. RESULTS Eleven plasma proteins were identified with links to atopic asthma (AA), atopic dermatitis (AD), and allergic rhinitis (AR). Subsequently, these proteins were classified into four distinct target groups, with a focus on tier 1 and 2 targets due to their higher potential to become drug targets. MR analysis and extra validation revealed STAT6 and TNFRSF6B to be Tier 1 and IL1RL2 and IL6R to be Tier 2 proteins with the potential for AA treatment. Two Tier 1 proteins, CRAT and TNFRSF6B, and five Tier 2 proteins, ERBB3, IL6R, MMP12, ICAM1, and IL1RL2, were linked to AD, and three Tier 2 proteins, MANF, STAT6, and TNFSF8, to AR. CONCLUSION Eleven Tier 1 and 2 protein targets that are promising drug target candidates were identified for AA, AD, and AR, which influence the development of allergic diseases and expose new diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Ziqin Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410000, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Qiangxiang Li
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Yajia Li
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Jianhuang Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410000, China.
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.
| |
Collapse
|
7
|
Koduri MA, Pingali T, Prasad D, Singh V, Singh S, Shanbhag SS, Basu S, Singh V. Neutrophil-driven and interleukin-36γ-associated ocular surface inflammation in chronic Stevens-Johnson syndrome. Allergy 2024. [PMID: 38682250 DOI: 10.1111/all.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE This study aims to elucidate the tear proteome and understand the underlying molecular mechanisms involved in the ocular complications following Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN). METHODS Mass spectrometry (MS) was performed to quantify the tear fluid proteins from chronic SJS/TEN patients (n = 22 eyes) and age- and gender-matched controls (n = 22 eyes). The candidate proteins were validated using ELISA (n = 80 eyes) in tear samples and immunohistochemistry (IHC; n = 12) in eyelid margin specimens. These proteins were compared for significant differences based on age, gender, disease duration, and ocular severity. RESULTS A total of 1692 tear fluid proteins were identified, of which 470 were significantly differentially regulated in chronic SJS/TEN. The top 10 significantly upregulated proteins were neutrophil secretions including neutrophil elastase (p < .0001), defensin (p < .0001), and matrix metalloproteinase 8 (p < .0001). The presence of neutrophils was confirmed by the upregulation of IL-8 (p < .001) in tears, a key cytokine known for recruiting neutrophils. Additionally, positive expression of myeloperoxidase was observed in the keratinized eyelid margins of SJS/TEN to validate the presence of neutrophils. Among 41 unique proteins identified by MS, IL-36γ (p < .01) was expressed in three SJS/TEN patients and was confirmed in SJS/TEN tears and eyelid margins by ELISA and IHC, respectively. IL-36γ was specifically expressed in the superficial layers of eyelid margin keratinized conjunctiva. The majority of the significantly downregulated proteins were lacrimal gland secretions such as lacritin (p < .0001) and opiorphin (p < .002). Neutrophil elastase (p < .02) was significantly elevated in patients with severe eyelid margin keratinization. CONCLUSION Our observations indicate a clear correlation between eyelid margin keratinization and the expression of IL-36γ, potentially mediated by neutrophils recruited via IL-8. Future experimental studies are needed to test the role of therapies targeting IL-8 and/or IL-36γ in reducing eyelid margin keratinization and its associated ocular complications in SJS/TEN.
Collapse
Affiliation(s)
- Madhuri Amulya Koduri
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Tejaswini Pingali
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Deeksha Prasad
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Vijay Singh
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Swati Singh
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Swapna S Shanbhag
- The Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sayan Basu
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
- The Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Vivek Singh
- Centre for Ocular Regeneration (CORE), Prof. Brien Holden Eye Research Centre (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
- The Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Xin T, Xing R, Jiang H, Jin F, Li M. Interleukin-36 receptor antagonist stimulation in vitro inhibits peripheral and lung-resident T cell response isolated from patients with ventilator-associated pneumonia. Int Immunopharmacol 2024; 129:111513. [PMID: 38301411 DOI: 10.1016/j.intimp.2024.111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
Interleukin-36 (IL-36) cytokine family members play an immunomodulatory function to immune cells through IL-36 receptor signaling pathway. However, the regulatory role of IL-36 exerted on T cells is not completely elucidated in patients with ventilator-associated pneumonia (VAP). For this purpose, this study enrolled 51 VAP patients and 27 controls. IL-36 levels were measured by ELISA. The mRNA levels of IL-36 receptor subunits were determined by real-time PCR. CD4+ and CD8+ T cells were enriched, and stimulated with recombinant IL-36 receptor antagonist (IL-36RA). The influence of IL-36RA on transcription factors and cytokine secretions by CD4+ T cells was investigated. The modulatory function of IL-36RA on CD8+ T cells was assessed by measuring target cell death and cytokine secretions. There were no significant differences in serum IL-36 levels between VAP patients and controls. Only IL-36RA, but not IL-36α, IL-36β, or IL-36γ, in bronchoalveolar lavage fluid was elevated in infection site of VAP patients. IL-36 receptor subunits in CD4+ and CD8+ T cells were comparable between VAP patients and controls. 10 ng/mL of IL-36RA stimulation dampened peripheral effector CD4+ T cell response isolated from both VAP patients and controls. Target cell death mediated by CD8+ T cells isolated from BAFL of VAP patients was suppressed by 100 ng/mL of IL-36RA stimulation in vitro. The down-regulations of perforin, granzyme B, interferon-γ, tumor necrosis factor-α, and Fas ligand following IL-36RA stimulation in vitro were responsible for reduced CD8+ T cell-mediated cytotoxicity. IL-36RA revealed an immunosuppressive property for T cell response in vitro, and may be involved in the protective mechanism in VAP patients.
Collapse
Affiliation(s)
- Tao Xin
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shaanxi Province 710038, China
| | - Rongxue Xing
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shaanxi Province 710038, China
| | - Hua Jiang
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shaanxi Province 710038, China
| | - Faguang Jin
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shaanxi Province 710038, China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
9
|
Ahmad F, Alam MA, Ansari AW, Jochebeth A, Leo R, Al-Abdulla MN, Al-Khawaga S, AlHammadi A, Al-Malki A, Al Naama K, Ahmad A, Buddenkotte J, Steinhoff M. Emerging Role of the IL-36/IL-36R Axis in Multiple Inflammatory Skin Diseases. J Invest Dermatol 2024; 144:206-224. [PMID: 38189700 DOI: 10.1016/j.jid.2023.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
IL-36 is a most recent member of the IL-1 cytokine family, primarily expressed at barrier sites of the body such as the skin, lungs, and intestine. It plays a vital role in inflammation and is implicated in the development of various cutaneous; intestinal; and pulmonary disorders, including psoriasis, inflammatory bowel disease, and chronic obstructive pulmonary disease. IL-36 comprises 4 isoforms: the proinflammatory IL-36α, IL-36β, and IL-36γ and the anti-inflammatory IL-36R antagonist. An imbalance between proinflammatory and anti-inflammatory IL-36 isoforms can contribute to the inflammatory fate of cells and tissues. IL-36 cytokines signal through an IL-36R heterodimer mediating their function through canonical signaling cacade, including the NF-B pathway. Prominent for its role in psoriasis, IL-36 has recently been associated with disease mechanisms in atopic dermatitis, hidradenitis suppurativa, neutrophilic dermatoses, autoimmune blistering disease, and Netherton syndrome. The major cutaneous source of IL-36 cytokines is keratinocytes, pointing to its role in the communication between the epidermis, innate (neutrophils, dendritic cells) immune system, and adaptive (T helper [Th]1 cells, Th17) immune system. Thus, cutaneous IL-36 signaling is crucial for the immunopathological outcome of various skin diseases. Consequently, the IL-36/IL-36R axis has recently been recognized as a promising drug target for the treatment of inflammatory disorders beyond psoriasis. This review summarizes the current update on IL-36 cytokines in inflammatory skin diseases.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Wahid Ansari
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Anh Jochebeth
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rari Leo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Khalifa Al Naama
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jörg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Medical School, Qatar University, Doha, Qatar; Weill Cornell Medicine, Weill Cornell University, New York, New York, USA; Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
10
|
Li J, Wang Z, Dong H, Hao Y, Gao P, Li W. Different expression levels of interleukin-36 in asthma phenotypes. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:3. [PMID: 38218943 PMCID: PMC10787970 DOI: 10.1186/s13223-023-00868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 06/26/2023] [Indexed: 01/15/2024]
Abstract
Interleukin (IL)-36 family is closely associated with inflammation and consists of IL-36α, IL-36β, IL-36γ, and IL-36Ra. The role of IL-36 in the context of asthma and asthmatic phenotypes is not well characterized. We examined the sputum IL-36 levels in patients with different asthma phenotypes in order to unravel the mechanism of IL-36 in different asthma phenotypes. Our objective was to investigate the induced sputum IL-36α, IL-36β, IL-36γ, and IL-36Ra concentrations in patients with mild asthma, and to analyze the relationship of these markers with lung function and other cytokines in patients with different asthma phenotypes. Induced sputum samples were collected from patients with mild controlled asthma (n = 62, 27 males, age 54.77 ± 15.49) and healthy non-asthmatic controls (n = 16, 10 males, age 54.25 ± 14.60). Inflammatory cell counts in sputum were determined. The concentrations of IL-36 and other cytokines in the sputum supernatant were measured by ELISA and Cytometric Bead Array. This is the first study to report the differential expression of different isoforms of IL-36 in different asthma phenotypes. IL-36α and IL-36β concentrations were significantly higher in the asthma group (P = 0.003 and 0.031), while IL-36Ra concentrations were significantly lower (P < 0.001) compared to healthy non-asthmatic controls. Sputum IL-36α and IL-36β concentrations in the neutrophilic asthma group were significantly higher than those in paucigranulocytic asthma (n = 24) and eosinophilic asthma groups (n = 23). IL-36α and IL-36β showed positive correlation with sputum neutrophils and total cell count (R = 0.689, P < 0.01; R = 0.304, P = 0.008; R = 0.689, P < 0.042; R = 0.253, P = 0.026). In conclusion, IL-36α and IL-36β may contribute to asthma airway inflammation by promoting neutrophil recruitment in airways. Our study provides insights into the inflammatory pathways of neutrophilic asthma and identifies potential therapeutic target.
Collapse
Affiliation(s)
- Jinyan Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengda Wang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hongna Dong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuqiu Hao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Peng Gao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Wei Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
11
|
Zhang R, Jiang M, Huang M, Yang J, Liu Q, Zhao Z, Bai Y, He T, Zhang D, Zhang M. Prognostic value of Interleukin-36s in cancers: A systematic review and meta-analysis. Cytokine 2023; 172:156397. [PMID: 37922622 DOI: 10.1016/j.cyto.2023.156397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Interleukin-36s (IL-36s) are a category of inflammatory cytokines and an increasing number of studies over the past decade have found that different kinds of IL-36s play different roles in cancers. This systematic review and meta-analysis aimed to evaluate the prognostic value of IL-36s in different cancer types. METHOD Two reviewers independently searched in PubMed, Cochrane Library and EMBASE up to December 13, 2022. We extracted the hazard ratio (HR) and the confidence intervals (CIs) of the related prognostic outcomes and analyzed the pooled HR. RESULTS We included 12 studies including 1925 patients. In all, six studies including IL-36α, five including IL-36γ and one including IL-36β. A high expression of IL-36α was associated with better overall survival (OS) (HR = 0.48, 95 %CI: 0.37-0.62, P < 0.001) of cancer patients. The expression of IL-36γ was not related with cancers. Further, subgroup analysis showed that the expression of IL-36γ had no correlation with the OS of colorectal cancer (CRC) and non‑small cell lung cancer (NSCLC) patients. Interestingly, a high expression of IL-36γ played contrasting prognostic roles in hepatocellular carcinoma (HCC) (HR = 0.43, 95 %CI: 0.27-0.69, P < 0.001) patients and gastric cancer (GC) (HR = 1.58, 95 %CI: 1.33-1.87, P < 0.001) patients. The only IL-36β related study showed the expression of IL-36β was not correlated with the prognosis of CRC patients (P > 0.05). CONCLUSION IL-36α, IL-36β and IL-36γ possibly play different roles in different cancers. High expression of IL-36α may be associated with good prognostic value in cancer patients, especially in CRC patients. The association between cancers prognosis and expression of IL-36β or IL-36γ needs further evaluation. These conclusions need more clinical prognostic data for confirmation.
Collapse
Affiliation(s)
- Rui Zhang
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China; Department of Pathology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu, China
| | - Mengyuan Jiang
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China; Department of Pathology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu, China
| | - Min Huang
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China; Department of Pathology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu, China
| | - Jing Yang
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China; Department of Pathology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu, China
| | - Qianqian Liu
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China; Department of Pathology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu, China
| | - Ziru Zhao
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China; Department of Pathology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu, China
| | - Yuping Bai
- The Department of Pathology, Hainan Provincial Hospital, Haikou 570100, Hainan, China
| | - Tingting He
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China; Department of Pathology, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu, China
| | - Dengcai Zhang
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Maternity and Child Hospital, Lanzhou 730000, Gansu, China
| | - Min Zhang
- First School of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China; Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, Gansu, China.
| |
Collapse
|
12
|
Baker KJ, Buskiewicz E, Finucane M, Chelliah A, Burke L, Houston A, Brint E. IL-36 expression is increased in NSCLC with IL-36 stimulation of lung cancer cells promoting a pro-tumorigenic phenotype. Cytokine 2023; 165:156170. [PMID: 36931148 DOI: 10.1016/j.cyto.2023.156170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
The IL-36 cytokines are a recently described subset of the IL-1 family of cytokines, and have been shown to play a role in the pathogenesis of respiratory diseases such as asthma and COPD. Given the common aetiological links between COPD and lung cancer development, as well as the involvement of other IL-1 family members in lung tumorigenesis, the aim of this work was to investigate the role of IL-36 cytokines in the pathogenesis of lung cancer. In this study we demonstrate that expression of IL-36 cytokines and receptor mRNA and protein are significantly increased in lung cancer tissue compared to adjacent non-tumour tissue. In vitro assays showed that stimulation of two lung cancer cell lines, SKMES-1 human squamous cell and LLC murine lung cancer, with IL-36R agonists resulted in increased cellular migration and proliferation. All IL-36 cytokines induced the expression of pro-inflammatory chemokines in both lung cancer cell lines with synergistic effects identified upon co-stimulation of cells with IL-17, IL-22 and TNFα. Furthermore, we report that IL-36 cytokines induce protein expression of the immune checkpoint inhibitor protein PD-L1 on lung cancer cells. Taken together, this data indicates that targeting IL-36R signalling may be a useful targeted therapy for lung cancer patients with IL-36R+ cancer cells.
Collapse
Affiliation(s)
- Kevin James Baker
- Department of Pathology, UCC, Cork, Ireland; Department of Medicine, UCC, Cork, Ireland
| | | | - Méabh Finucane
- Department of Pathology, UCC, Cork, Ireland; Department of Medicine, UCC, Cork, Ireland
| | | | - Louise Burke
- Department of Pathology, UCC, Cork, Ireland; Dept. Of Pathology CUH, Ireland
| | - Aileen Houston
- Department of Medicine, UCC, Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, UCC, Cork, Ireland; APC Microbiome Ireland, UCC, Cork, Ireland.
| |
Collapse
|
13
|
Zheng W, Hu X, Zou M, Hu N, Song W, Wang R, Liu Y, Hou Q, Liu Y, Chen X, Cheng Z. Plasma IL-36α and IL-36γ as Potential Biomarkers in Interstitial Lung Disease Associated with Rheumatoid Arthritis: a Pilot Study in the Chinese Population. Inflammation 2023; 46:285-296. [PMID: 36044099 DOI: 10.1007/s10753-022-01733-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Interstitial lung disease (ILD) is a frequent extra-articular manifestation of rheumatoid arthritis (RA) and increases mortality in patients with RA. Early identification of ILD, especially the usual interstitial pneumonia (UIP) pattern with a poor prognosis, is important for guiding treatment of RA-ILD and preventing damage resulting from a delay in diagnosis. Interleukin-36 (IL-36) cytokines are involved in connective tissue diseases. However, IL-36 expression in RA-ILD is unknown. In this study, the clinical relevance of plasma IL-36 cytokines was evaluated in 39 patients with RA-ILD and three other groups (30 healthy controls [HCs], 35 RA patients without ILD, and 27 patients with idiopathic pulmonary fibrosis [IPF]) in the Chinese population. Plasma IL-36α and IL-36γ concentrations were elevated in patients with RA-ILD compared with those in HCs and patients with RA. RA-ILD patients with UIP pattern had higher plasma IL-36γ concentrations than those with RA-ILD without UIP, but these were lower than those in patients with IPF. Receiver operating curve analysis suggested that IL-36α and IL-36γ were potential biomarkers for identifying ILD in patients with RA. Additionally, the optimal cutoff value of IL-36γ for distinguishing RA-ILD with the UIP pattern from RA-ILD without UIP was 555.40 pg/mL and that for distinguishing RA-ILD from IPF was 655.10 pg/mL. No significant difference in plasma IL-36β or IL-36Ra concentrations was found between patients with RA-ILD and the three other groups. We also found that the lungs originating from different types of patients with PF, including RA-ILD and IPF, and those from mice following bleomycin-induced PF were characterized by increased IL-36γ expression. Our findings suggest that using IL-36 cytokines to identify patients with RA for further ILD workups may provide additional diagnostic value to the current clinically available assays. Moreover, IL-36γ may help to identify the presence of the UIP pattern in patients with RA-ILD and to discriminate RA-ILD from IPF.
Collapse
Affiliation(s)
- Weishuai Zheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xingxing Hu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Menglin Zou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nie Hu
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weiwei Song
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rui Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qinhui Hou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuan Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xiaoqi Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
14
|
Guo L, Zhang Q, Lv C, Ma X, Song X, Huang J, Chen W, Li C, Ding Q. A novel biomarker for pleural effusion diagnosis: Interleukin-36γ in pleural fluid. J Clin Lab Anal 2022; 37:e24799. [PMID: 36478612 PMCID: PMC9833963 DOI: 10.1002/jcla.24799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Numerous studies have described the critical importance of interleukin (IL) -36γ in host defense against lung infections, but it is unknown whether it plays a role in infectious pleural effusion (IPE). This study aimed to examine the levels of IL-36γ in pleural effusions of different etiologies and evaluate the diagnostic accuracy of IL-36γ in the differential diagnosis of IPE. METHODS A total of 112 individuals was enrolled in this research. IL-36γ levels in pleural fluids of all 112 patients were measured by enzyme-linked immunosorbent assay (ELISA). We also characterized these markers' diagnostic values across various groups. RESULTS Patients with tuberculous pleural effusion (TPE) and parapneumonic effusion (PPE) had exhibited markedly higher IL-36γ levels in their pleural fluid than the malignant pleural effusion (MPE) and transudative effusion patients. Furthermore, the IL-36γ concentrations in TPE patients were evidently higher than in uncomplicated parapneumonic effusion (UPPE) patients but significantly lower than in complicated parapneumonic effusion (CPPE)/empyema patients. Pleural fluid IL-36γ is a useful marker to differentiate TPE from UPPE, at a cut-off value for 657.5 pg/ml (area under the curve = 0.904, p < 0.0001) with 70.0% sensitivity and 95.7% specificity. CONCLUSIONS The elevated IL-36γ in pleural effusion may be used as a novel biomarker for infectious pleural effusion diagnosis, particularly in patients with CPPE/empyema, and is a potentially promising biomarker to differentiate between TPE and UPPE.
Collapse
Affiliation(s)
- Lun Guo
- School of MedicineNingbo UniversityNingboChina,Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| | - Qipan Zhang
- School of MedicineNingbo UniversityNingboChina,Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| | - Chengna Lv
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| | - Xudan Ma
- School of MedicineNingbo UniversityNingboChina,Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| | - Xuxiang Song
- School of MedicineNingbo UniversityNingboChina,Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| | - Jing Huang
- Department of Pharmacy, The Affiliated Hospital of Medical CollegeNingbo UniversityNingboChina
| | - Weili Chen
- School of MedicineNingbo UniversityNingboChina,Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| | - Chaofen Li
- Department of laboratory medicineNingbo Ninth HospitalNingboChina
| | - Qunli Ding
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Medical SchoolNingbo UniversityNingboChina
| |
Collapse
|
15
|
Prombutara P, Adriansyah Putra Siregar T, Laopanupong T, Kanjanasirirat P, Khumpanied T, Borwornpinyo S, Rai A, Chaiprasert A, Palittapongarnpim P, Ponpuak M. Host cell transcriptomic response to the multidrug-resistant Mycobacterium tuberculosis clonal outbreak Beijing strain reveals its pathogenic features. Virulence 2022; 13:1810-1826. [PMID: 36242542 PMCID: PMC9578452 DOI: 10.1080/21505594.2022.2135268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The upsurge of multidrug-resistant infections has rendered tuberculosis the principal cause of death among infectious diseases. A clonal outbreak multidrug-resistant triggering strain of Mycobacterium tuberculosis was identified in Kanchanaburi Province, labelled "MKR superspreader," which was found to subsequently spread to other regions, as revealed by prior epidemiological reports in Thailand. Herein, we showed that the MKR displayed a higher growth rate upon infection into host macrophages in comparison with the H37Rv reference strain. To further elucidate MKR's biology, we utilized RNA-Seq and differential gene expression analyses to identify host factors involved in the intracellular viability of the MKR. A set of host genes function in the cellular response to lipid pathway was found to be uniquely up-regulated in host macrophages infected with the MKR, but not those infected with H37Rv. Within this set of genes, the IL-36 cytokines which regulate host cell cholesterol metabolism and resistance against mycobacteria attracted our interest, as our previous study revealed that the MKR elevated genes associated with cholesterol breakdown during its growth inside host macrophages. Indeed, when comparing macrophages infected with the MKR to H37Rv-infected cells, our RNA-Seq data showed that the expression ratio of IL-36RN, the negative regulator of the IL-36 pathway, to that of IL-36G was greater in macrophages infected with the MKR. Furthermore, the MKR's intracellular survival and increased intracellular cholesterol level in the MKR-infected macrophages were diminished with decreased IL-36RN expression. Overall, our results indicated that IL-36RN could serve as a new target against this emerging multidrug-resistant M. tuberculosis strain.
Collapse
Affiliation(s)
- Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Faculty of Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tegar Adriansyah Putra Siregar
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Microbiology, Faculty of Medicine, University of Muhammadiyah Sumatera Utara, Medan, Indonesia
| | - Thanida Laopanupong
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Tanawadee Khumpanied
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Awantika Rai
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Angkana Chaiprasert
- Drug-Resistance Tuberculosis Research Fund, Siriraj Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pratumthani, Thailand
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Treponema denticola Induces Interleukin-36γ Expression in Human Oral Gingival Keratinocytes via the Parallel Activation of NF-κB and Mitogen-Activated Protein Kinase Pathways. Infect Immun 2022; 90:e0024722. [PMID: 36040155 PMCID: PMC9584330 DOI: 10.1128/iai.00247-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oral epithelial barrier acts as both a physical barrier to the abundant oral microbiome and a sentry for the immune system that, in health, constrains the accumulation of the polymicrobial plaque biofilm. The immune homeostasis during gingivitis that is largely protective becomes dysregulated, unproductive, and destructive to gingival tissue as periodontal disease progresses to periodontitis. The progression to periodontitis is associated with the dysbiosis of the oral microbiome, with increasing prevalences and abundances of periodontal pathogens such as Treponema denticola. Despite the association of T. denticola with a chronic inflammatory disease, relatively little is known about gingival epithelial cell responses to T. denticola infection. Here, we characterized the transcriptome of gingival keratinocytes following T. denticola challenge and identified interleukin-36γ (IL-36γ) as the most differentially expressed cytokine. IL-36γ expression is regulated by p65 NF-κB and the activation of both the Jun N-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) pathways downstream of Toll-like receptor 2 (TLR2). Finally, we demonstrate for the first time that mitogen- and stress-activated kinase 1 (MSK1) contributes to IL-36γ expression and may link the activation of MAPK and NF-κB signaling. These findings suggest that the interactions of T. denticola with the gingival epithelium lead to elevated IL-36γ expression, which may be a critical inducer and amplifier of gingival inflammation and subsequent alveolar bone loss.
Collapse
|
17
|
Tabary M, Gheware A, Peñaloza HF, Lee JS. The matricellular protein thrombospondin-1 in lung inflammation and injury. Am J Physiol Cell Physiol 2022; 323:C857-C865. [PMID: 35912991 PMCID: PMC9467471 DOI: 10.1152/ajpcell.00182.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Matricellular proteins comprise a diverse group of molecular entities secreted into the extracellular space. They interact with the extracellular matrix (ECM), integrins, and other cell-surface receptors, and can alter matrix strength, cell attachment to the matrix, and cell-cell adhesion. A founding member of this group is thrombospondin-1 (TSP-1), a high molecular-mass homotrimeric glycoprotein. Given the importance of the matrix and ECM remodeling in the lung following injury, TSP-1 has been implicated in a number of lung pathologies. This review examines the role of TSP-1 as a damage controller in the context of lung inflammation, injury resolution, and repair in noninfectious and infectious models. This review also discusses the potential role of TSP-1 in human diseases as it relates to lung inflammation and injury.
Collapse
Affiliation(s)
- Mohammadreza Tabary
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Atish Gheware
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hernán F Peñaloza
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Janet S Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|