1
|
Shu L, Tao T, Xiao D, Liu S, Tao Y. The role of B cell immunity in lung adenocarcinoma. Genes Immun 2025:10.1038/s41435-025-00331-9. [PMID: 40360749 DOI: 10.1038/s41435-025-00331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 04/07/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Lung cancer is the deadliest cancer globally. Non-small cell lung cancer (NSCLC), including adenocarcinoma, squamous cell carcinoma, and large cell carcinoma, constitutes a significant portion of cases. Adenocarcinoma, the most prevalent type, has seen a rising incidence. Immune checkpoint inhibitors (ICIs) have improved outcomes in lung adenocarcinoma (LUAD), yet response rates remain unsatisfactory. PD-1/PD-L1 inhibitors are primary ICIs for LUAD, targeting the PD-1/PD-L1 pathway between CD8+ T cells and tumor cells. However, LUAD presents a "cold tumor" phenotype with fewer CD8+ T cells and lower PD-1 expression, leading to resistance to ICIs. Thus, understanding the function of other immune cell in tumor microenvironment is crucial for developing novel immunotherapies for LUAD. B cells, which is part of the adaptive immune system, have gained attention for its role in cancer immunology. While research on B cells lags behind T cells, recent studies reveal their close correlation with prognosis and immunotherapy effectiveness in various solid tumors, including lung cancer. B cells show higher abundance, activity, and prognostic significance in LUAD than that in LUSC. This review summarizes the difference of B cell immunity between LUAD and other lung cancers, outlines the role of B cell immunity in LUAD.
Collapse
Affiliation(s)
- Long Shu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Tania Tao
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Jiang S, Zhu D, Wang Y. Tumor-infiltrating B cells in non-small cell lung cancer: current insights and future directions. Cancer Cell Int 2025; 25:68. [PMID: 40011889 DOI: 10.1186/s12935-025-03668-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025] Open
Abstract
Tumor-infiltrating immune cells have been widely recognized as playing an important role in the promotion or inhibition of tumor growth. Recently there has been increasing attention on tumor-infiltrating B cells in the tumor microenvironment. However, the role of B cells in non-small cell lung cancer remains largely unknown. Reviewing recent studies, here we describe the distribution, phenotype, and heterogeneity of B lymphocytes in the non-small cell lung cancer, present their functions and discuss the prognostic significance of the different B-cell subtypes as well as potential therapeutic strategies targeting TIL-Bs. Finally, the review highlights the need for future research to further elucidate their precise function in the tumor microenvironment.
Collapse
Affiliation(s)
- Shuyue Jiang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Daxing Zhu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Sivakumar S, Jainarayanan A, Arbe-Barnes E, Sharma PK, Leathlobhair MN, Amin S, Reiss DJ, Heij L, Hegde S, Magen A, Tucci F, Sun B, Wu S, Anand NM, Slawinski H, Revale S, Nassiri I, Webber J, Hoeltzel GD, Frampton AE, Wiltberger G, Neumann U, Charlton P, Spiers L, Elliott T, Wang M, Couto S, Lila T, Sivakumar PV, Ratushny AV, Middleton MR, Peppa D, Fairfax B, Merad M, Dustin ML, Abu-Shah E, Bashford-Rogers R. Distinct immune cell infiltration patterns in pancreatic ductal adenocarcinoma (PDAC) exhibit divergent immune cell selection and immunosuppressive mechanisms. Nat Commun 2025; 16:1397. [PMID: 39915477 PMCID: PMC11802853 DOI: 10.1038/s41467-024-55424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2024] [Indexed: 02/09/2025] Open
Abstract
Pancreatic ductal adenocarcinoma has a dismal prognosis. A comprehensive analysis of single-cell multi-omic data from matched tumour-infiltrated CD45+ cells and peripheral blood in 12 patients, and two published datasets, reveals a complex immune infiltrate. Patients have either a myeloid-enriched or adaptive-enriched tumour microenvironment. Adaptive immune cell-enriched is intrinsically linked with highly distinct B and T cell clonal selection, diversification, and differentiation. Using TCR data, we see the largest clonal expansions in CD8 effector memory, senescent cells, and highly activated regulatory T cells which are induced within the tumour from naïve cells. We identify pathways that potentially lead to a suppressive microenvironment, including investigational targets TIGIT/PVR and SIRPA/CD47. Analysis of patients from the APACT clinical trial shows that myeloid enrichment had a shorter overall survival compared to those with adaptive cell enrichment. Strategies for rationale therapeutic development in this disease include boosting of B cell responses, targeting immunosuppressive macrophages, and specific Treg cell depletion approaches.
Collapse
Affiliation(s)
- Shivan Sivakumar
- Department of Oncology, University of Oxford, Oxford, OX3 7LF, UK.
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7FY, UK.
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Ashwin Jainarayanan
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7FY, UK
- Institute of Developmental and Regenerative Medicine (IDRM), Old Road Campus, Old Rd, Roosevelt Dr, Headington, University of Oxford, Oxford, OX3 7TY, UK
| | - Edward Arbe-Barnes
- Oxford University Clinical Academic Graduate School, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- UCL Institute of Immunity & Transplantation, The Pears Building, Pond Street, London, NW3 2PP, UK
| | | | - Maire Ni Leathlobhair
- Department of Microbiology, Trinity College, Dublin, Ireland
- Oxford Big Data Institute, Old Road Campus, University of Oxford, Oxford, OX3 7LF, UK
| | - Sakina Amin
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
| | | | - Lara Heij
- GROW School for Oncology and Developmental Biology, Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Samarth Hegde
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Assaf Magen
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Felicia Tucci
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
- Oxford Cancer Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Bo Sun
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Shihong Wu
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
- Oxford Cancer Centre, Oxford, UK
| | | | - Hubert Slawinski
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Santiago Revale
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Isar Nassiri
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jonathon Webber
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7FY, UK
| | - Gerard D Hoeltzel
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK
| | - Adam E Frampton
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Daphne Jackson Road, Guildford, GU2 7WG, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford, GU2 7XX, UK
- Targeted Cancer Therapy Unit, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford, GU2 7WG, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Georg Wiltberger
- Department of General, Visceral, and Transplantation Surgery, University Hospital of RWTH Aachen, Aachen, Germany
| | - Ulf Neumann
- Department of General, Visceral, and Transplantation Surgery, University Hospital of RWTH Aachen, Aachen, Germany
- Department of Surgery Maastricht University Medical Center (MUMC), Maastricht, The Netherlands
| | - Philip Charlton
- Department of Oncology, University of Oxford, Oxford, OX3 7LF, UK
| | - Laura Spiers
- Department of Oncology, University of Oxford, Oxford, OX3 7LF, UK
| | - Tim Elliott
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Maria Wang
- Bristol-Myers Squibb, Seattle, Seattle, WA, USA
| | - Suzana Couto
- Neomorph, Inc., 5590 Morehouse Dr, San Diego, CA, USA
| | - Thomas Lila
- Bristol-Myers Squibb, Seattle, Seattle, WA, USA
| | | | | | - Mark R Middleton
- Department of Oncology, University of Oxford, Oxford, OX3 7LF, UK
| | - Dimitra Peppa
- UCL Institute of Immunity & Transplantation, The Pears Building, Pond Street, London, NW3 2PP, UK
- Nuffield Department of Medicine, Old Road Campus, University of Oxford, Oxford, OX3 7BN, UK
| | - Benjamin Fairfax
- Department of Oncology, University of Oxford, Oxford, OX3 7LF, UK
| | - Miriam Merad
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7FY, UK
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Enas Abu-Shah
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Dr, Headington, Oxford, OX3 7FY, UK.
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK.
| | - Rachael Bashford-Rogers
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford, OX1 3QU, UK.
- Oxford Cancer Centre, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Mestiri S, Sami A, Sah N, El-Ella DMA, Khatoon S, Shafique K, Raza A, Mathkor DM, Haque S. Cellular plasticity and non-small cell lung cancer: role of T and NK cell immune evasion and acquisition of resistance to immunotherapies. Cancer Metastasis Rev 2025; 44:27. [PMID: 39856479 DOI: 10.1007/s10555-025-10244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Lung cancer is a leading global cause of mortality, with non-small cell lung cancer (NSCLC) accounting for a significant portion of cases. Immune checkpoint inhibitors (ICIs) have transformed NSCLC treatment; however, many patients remain unresponsive. ICI resistance in NSCLC and its association with cellular plasticity, epithelial-mesenchymal transition (EMT), enhanced adaptability, invasiveness, and resistance is largely influenced by epigenetic changes, signaling pathways, tumor microenvironment, and associated immune cells, fibroblasts, and cytokines. Immunosuppressive cells, including M2 tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, contribute to resistance by suppressing the immune response. This cellular plasticity is influenced when B cells, natural killer cells, and T cells are exhausted or inhibited by components of the tumor microenvironment. Conversely, diverse T cell, NK cell, and B cell subsets hold potential as predictive response markers particularly cytotoxic CD8+ T cells, effector memory T cells, activated T cells, tumor infiltrated NK cells, tertiary lymphoid structures, etc. influence treatment response. Identifying specific gene expressions and immunophenotypes within T cells may offer insights into early clinical responses to immunotherapy. ICI resistance in NSCLC is a multifaceted process shaped by tumor plasticity, the complex tumor microenvironment, and dynamic immune cell changes. Comprehensive analysis of these factors may lead to the identification of novel biomarkers and combination therapies to enhance ICI efficacy in NSCLC treatment.
Collapse
Affiliation(s)
- Sarra Mestiri
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ana Sami
- Queen Mary University of London, London, UK
| | - Naresh Sah
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, USA
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research/Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Sabiha Khatoon
- Department of Physiology and Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Khadija Shafique
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, UAE.
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
- Universidad Espiritu Santo, Samborondon, Ecuador.
| |
Collapse
|
5
|
Chen L, Tan H, Geng R, Li Y, Wang Y, Li T. Immune Signatures of Solid Tumor Patients Treated With Immune Checkpoint Inhibitors: An Observational Study. Thorac Cancer 2025; 16:e15493. [PMID: 39582218 PMCID: PMC11729440 DOI: 10.1111/1759-7714.15493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024] Open
Abstract
PURPOSE Our study aimed to comprehensively describe the features of peripheral blood multiple immune cell phenotypes in solid tumor patients during pretreatment and after immunotherapy, providing a more convenient approach for studying the prognosis of immunotherapy in different solid tumor patients. METHODS We prospectively recruited patients with advanced solid tumors from Peking Union Medical College Hospital (PUMCH) between February 2023 and April 2024. Using multicolor flow cytometry, our study comprehensively observed and described the signatures of peripheral blood lymphocyte subsets including activation, proliferation, function, naïve memory, and T cell exhaustion immune cell subsets in this population of pretreatment and after immunotherapy. RESULTS Our study enrolled 59 advanced solid tumor patients with immunotherapy and 59 healthy controls were matched by age and gender. The results demonstrated a marked upregulation in the expression of lymphocyte activation markers CD38 and HLA-DR, as well as exhaustion and proliferation markers PD-1 and Ki67, in solid tumor patients compared to healthy controls. After immune checkpoint blockade (ICB) treatment, mainly the expression of Ki67CD4+T and HLA-DRCD38CD4+T, was significantly upregulated compared to pretreatment levels (p = 0.017, p = 0.019, respectively). We further found that gynecological tumors with better prognoses had higher baseline activation levels of CD4+ T cells compared to other solid tumors with poorer prognoses. CONCLUSION Our study elucidated the characteristics of different lymphocyte subsets in the peripheral blood of solid tumor patients. Further research revealed changes in the phenotypes of different lymphocyte subsets after ICIs treatment, with the activated phenotype of CD4+ T cells playing a crucial role in the antitumor effect. This lays the groundwork for further exploration of prognostic biomarkers and predictive models for cancer patients with immunotherapy.
Collapse
Affiliation(s)
- Ling Chen
- Department of Infectious DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Hourui Tan
- Department of Medical OncologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ruixuan Geng
- Department of International Medical ServicesPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yifan Li
- Department of Gynecologic OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yingyi Wang
- Department of Medical OncologyPeking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Taisheng Li
- Department of Infectious DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Complex Severe and Rare DiseasesPeking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
6
|
Shi X, Cheng X, Jiang A, Shi W, Zhu L, Mou W, Glaviano A, Liu Z, Cheng Q, Lin A, Wang L, Luo P. Immune Checkpoints in B Cells: Unlocking New Potentials in Cancer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403423. [PMID: 39509319 PMCID: PMC11653663 DOI: 10.1002/advs.202403423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/26/2024] [Indexed: 11/15/2024]
Abstract
B cells are crucial component of humoral immunity, and their role in the tumor immune microenvironment (TME) has garnered significant attention in recent years. These cells hold great potential and application prospects in the field of tumor immunotherapy. Research has demonstrated that the TME can remodel various B cell functions, including proliferation, differentiation, antigen presentation, and antibody production, thereby invalidating the anti-tumor effects of B cells. Concurrently, numerous immune checkpoints (ICs) on the surface of B cells are upregulated. Aberrant B-cell IC signals not only impair the function of B cells themselves, but also modulate the tumor-killing effects of other immune cells, ultimately fostering an immunosuppressive TME and facilitating tumor immune escape. Blocking ICs on B cells is beneficial for reversing the immunosuppressive TME and restoring anti-tumor immune responses. In this paper, the intricate connection between B-cell ICs and the TME is delved into, emphasizing the critical role of targeting B-cell ICs in anti-tumor immunity, which may provide valuable insights for the future development of tumor immunotherapy based on B cells.
Collapse
Affiliation(s)
- Xiaoye Shi
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510282China
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Xiangshu Cheng
- College of Bioinformatics Science and TechnologyHarbin Medical University157 Baojian Road. Nangang District, HarbinHeilongiiang150076China
| | - Aimin Jiang
- Department of UrologyChanghai HospitalNaval Medical University (Second Military Medical University)Shanghai200433China
| | - Wenjie Shi
- Molecular and Experimental SurgeryUniversity Clinic for General‐Visceral‐Vascular‐ and Trans‐Plantation SurgeryMedical Faculty University Hospital MagdeburgOtto‐von Guericke University39120MagdeburgGermany
| | - Lingxuan Zhu
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510282China
| | - Weiming Mou
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510282China
- Department of UrologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Antonino Glaviano
- Department of BiologicalChemical and Pharmaceutical Sciences and TechnologiesUniversity of PalermoPalermo90123Italy
| | - Zaoqu Liu
- Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Quan Cheng
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Anqi Lin
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510282China
| | - Linhui Wang
- Department of UrologyChanghai HospitalNaval Medical University (Second Military Medical University)Shanghai200433China
| | - Peng Luo
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdong510282China
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
| |
Collapse
|
7
|
Mackenzie NJ, Zimmermann K, Nicholls C, Perera MP, Ngoo A, Jeffery PL, Vela I, Kenna TJ, Williams ED, Thomas PB. Altered immunophenotypic expression in the peripheral bladder cancer immune landscape. Immunol Cell Biol 2024; 102:949-962. [PMID: 39474781 DOI: 10.1111/imcb.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 11/09/2024]
Abstract
Treatments targeting the immune system only benefit a subset of patients with bladder cancer (BC). Biomarkers predictive of BC progression and response to specific therapeutic interventions are required. We evaluated whether peripheral blood immune subsets and expression of clinically relevant immune checkpoint markers are associated with clinicopathologic features of BC. Peripheral blood mononuclear cells isolated from blood collected from 23 patients with BC and 9 age-matched unaffected-by-cancer control donors were assessed using a 21-parameter flow cytometry panel composed of markers of T, B, natural killer and myeloid populations and immune checkpoint markers. Patients with BC had significantly lower numbers of circulating CD19+ B cells and elevated circulating CD4+CD8+ T cells compared with the control cohort. Immune checkpoint markers programmed cell death protein 1 (PD-1) and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) were elevated in the total peripheral immune cell population in patients with BC. Within the BC cohort, PD-1 expression in T and myeloid cells was elevated in muscle-invasive compared with non-muscle-invasive disease. In addition, elevated T, B and myeloid PD-1 cell surface expression was significantly associated with tumor stage, suggesting that measures of peripheral immune cell exhaustion may be a predictor of tumor progression in BC. Finally, positive correlations between expression levels of the various immune checkpoints both overall and within key peripheral blood immune subsets collected from patients with BC were observed, highlighting likely coregulation of peripheral immune checkpoint expression. The peripheral blood immunophenotype in patients with BC is altered compared with cancer-free individuals. Understanding this dysregulated immune profile will contribute to the identification of diagnostic and prognostic indicators to guide effective immune-targeted, personalized treatments.
Collapse
Affiliation(s)
- Nathan J Mackenzie
- Queensland University of Technology (QUT), School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
| | - Kate Zimmermann
- Queensland University of Technology (QUT), School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Centre for Immunology and Infection Control, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Microbiome Research, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Clarissa Nicholls
- Queensland University of Technology (QUT), School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
| | - Mahasha Pj Perera
- Queensland University of Technology (QUT), School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Alexander Ngoo
- Queensland University of Technology (QUT), School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Penny L Jeffery
- Queensland University of Technology (QUT), School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
| | - Ian Vela
- Queensland University of Technology (QUT), School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Tony J Kenna
- Queensland University of Technology (QUT), School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Centre for Immunology and Infection Control, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Microbiome Research, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Elizabeth D Williams
- Queensland University of Technology (QUT), School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Patrick B Thomas
- Queensland University of Technology (QUT), School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), Brisbane, QLD, Australia
| |
Collapse
|
8
|
Xia L, Zhu X, Wang Y, Lu S. The gut microbiota improves the efficacy of immune-checkpoint inhibitor immunotherapy against tumors: From association to cause and effect. Cancer Lett 2024; 598:217123. [PMID: 39033797 DOI: 10.1016/j.canlet.2024.217123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Immune-checkpoint inhibitors (ICIs), including anti-PD-1/PD-L1 therapeutic antibodies, have markedly enhanced survival across numerous cancer types. However, the limited number of patients with durable benefits creates an urgent need to identify response biomarkers and to develop novel strategies so as to improve response. It is widely recognized that the gut microbiome is a key mediator in shaping immunity. Additionally, the gut microbiome shows significant potential in predicting the response to and enhancing the efficacy of ICI immunotherapy against cancer. Recent studies encompassing mechanistic analyses and clinical trials of microbiome-based therapy have shown a cause-and-effect relationship between the gut microbiome and the modulation of the ICI immunotherapeutic response, greatly contributing to the establishment of novel strategies that will improve response and overcome resistance to ICI treatment. In this review, we outline the current state of research advances and discuss the future directions of utilizing the gut microbiome to enhance the efficacy of ICI immunotherapy against tumors.
Collapse
Affiliation(s)
- Liliang Xia
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Xiaokuan Zhu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, PR China.
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, PR China.
| |
Collapse
|
9
|
Goswami M, Toney NJ, Pitts SC, Celades C, Schlom J, Donahue RN. Peripheral immune biomarkers for immune checkpoint inhibition of solid tumours. Clin Transl Med 2024; 14:e1814. [PMID: 39162097 PMCID: PMC11333946 DOI: 10.1002/ctm2.1814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND With the rapid adoption of immunotherapy for the treatment of cancer comes the pressing need for readily accessible biomarkers to guide immunotherapeutic strategies and offer insights into outcomes with specific treatments. Regular sampling of solid tumour tissues outside of melanoma for immune monitoring is not often feasible; conversely, routine, frequent interrogation of circulating immune biomarkers is entirely possible. As immunotherapies and immune checkpoint inhibitors, in particular, are more widely used in first-line, neoadjuvant, and metastatic settings, the discovery and validation of peripheral immune biomarkers are urgently needed across solid tumour types for improved prediction and prognostication of clinical outcomes in response to immunotherapy, as well as elucidation of mechanistic underpinnings of the intervention. Careful experimental design, encompassing both retrospective and prospective studies, is required in such biomarker identification studies, and concerted efforts are essential for their advancement into clinical settings. CONCLUSION In this review, we summarize shared immune features between the tumour microenvironment and systemic circulation, evaluate exploratory peripheral immune biomarker studies, and discuss associations between candidate biomarkers with clinical outcomes. We also consider integration of multiple peripheral immune parameters for better prediction and prognostication and discuss considerations in study design to further evaluate the clinical utility of candidate peripheral immune biomarkers for immunotherapy of solid tumours. HIGHLIGHTS Peripheral immune biomarkers are critical for improved prediction and prognostication of clinical outcomes for patients with solid tumours treated with immune checkpoint inhibition. Candidate peripheral biomarkers, such as cytokines, soluble factors, and immune cells, have potential as biomarkers to guide immunotherapy of solid tumours. Multiple peripheral immune parameters may be integrated to improve prediction and prognostication. The potential of peripheral immune biomarkers to guide immunotherapy of solid tumours requires critical work in biomarker discovery, validation, and standardization.
Collapse
Affiliation(s)
- Meghali Goswami
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Nicole J. Toney
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Stephanie C. Pitts
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Carolina Celades
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jeffrey Schlom
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Renee N. Donahue
- Center for Immuno‐Oncology, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
10
|
Flippot R, Teixeira M, Rey-Cardenas M, Carril-Ajuria L, Rainho L, Naoun N, Jouniaux JM, Boselli L, Naigeon M, Danlos FX, Escudier B, Scoazec JY, Cassard L, Albiges L, Chaput N. B cells and the coordination of immune checkpoint inhibitor response in patients with solid tumors. J Immunother Cancer 2024; 12:e008636. [PMID: 38631710 PMCID: PMC11029261 DOI: 10.1136/jitc-2023-008636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
Immunotherapy profoundly changed the landscape of cancer therapy by providing long-lasting responses in subsets of patients and is now the standard of care in several solid tumor types. However, immunotherapy activity beyond conventional immune checkpoint inhibition is plateauing, and biomarkers are overall lacking to guide treatment selection. Most studies have focused on T cell engagement and response, but there is a growing evidence that B cells may be key players in the establishment of an organized immune response, notably through tertiary lymphoid structures. Mechanisms of B cell response include antibody-dependent cellular cytotoxicity and phagocytosis, promotion of CD4+ and CD8+ T cell activation, maintenance of antitumor immune memory. In several solid tumor types, higher levels of B cells, specific B cell subpopulations, or the presence of tertiary lymphoid structures have been associated with improved outcomes on immune checkpoint inhibitors. The fate of B cell subpopulations may be widely influenced by the cytokine milieu, with versatile roles for B-specific cytokines B cell activating factor and B cell attracting chemokine-1/CXCL13, and a master regulatory role for IL-10. Roles of B cell-specific immune checkpoints such as TIM-1 are emerging and could represent potential therapeutic targets. Overall, the expanding field of B cells in solid tumors of holds promise for the improvement of current immunotherapy strategies and patient selection.
Collapse
Affiliation(s)
- Ronan Flippot
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marcus Teixeira
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Macarena Rey-Cardenas
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lucia Carril-Ajuria
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
- Medical Oncology, CHU Brugmann, Brussels, Belgium
| | - Larissa Rainho
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Natacha Naoun
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Jean-Mehdi Jouniaux
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lisa Boselli
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marie Naigeon
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Francois-Xavier Danlos
- LRTI, INSERM U1015, Gustave Roussy, Villejuif, France
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Bernard Escudier
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Lydie Cassard
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Nathalie Chaput
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
11
|
Tsai YT, Schlom J, Donahue RN. Blood-based biomarkers in patients with non-small cell lung cancer treated with immune checkpoint blockade. J Exp Clin Cancer Res 2024; 43:82. [PMID: 38493133 PMCID: PMC10944611 DOI: 10.1186/s13046-024-02969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 03/18/2024] Open
Abstract
The paradigm of non-small cell lung cancer (NSCLC) treatment has been profoundly influenced by the development of immune checkpoint inhibitors (ICI), but the range of clinical responses observed among patients poses significant challenges. To date, analyses of tumor biopsies are the only parameter used to guide prognosis to ICI therapy. Tumor biopsies, however, are often difficult to obtain and tissue-based biomarkers are limited by intratumoral heterogeneity and temporal variability. In response, there has been a growing emphasis on the development of "liquid biopsy"‒ derived biomarkers, which offer a minimally invasive means to dynamically monitor the immune status of NSCLC patients either before and/or during the course of treatment. Here we review studies in which multiple blood-based biomarkers encompassing circulating soluble analytes, immune cell subsets, circulating tumor DNA, blood-based tumor mutational burden, and circulating tumor cells have shown promising associations with the clinical response of NSCLC patients to ICI therapy. These investigations have unveiled compelling correlations between the peripheral immune status of patients both before and during ICI therapy and patient outcomes, which include response rates, progression-free survival, and overall survival. There is need for rigorous validation and standardization of these blood-based assays for broader clinical application. Integration of multiple blood-based biomarkers into comprehensive panels or algorithms also has the potential to enhance predictive accuracy. Further research aimed at longitudinal monitoring of circulating biomarkers is also crucial to comprehend immune dynamics and resistance mechanisms and should be used alongside tissue-based methods that interrogate the tumor microenvironment to guide treatment decisions and may inform on the development of novel therapeutic strategies. The data reviewed here reinforce the opportunity to refine patient stratification, optimize treatments, and improve outcomes not only in NSCLC but also in the wider spectrum of solid tumors undergoing immunotherapy.
Collapse
Affiliation(s)
- Yo-Ting Tsai
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Wang X, Liu X, Dai H, Jia J. Association of lymphocyte subsets with the efficacy and prognosis of PD‑1 inhibitor therapy in advanced gastric cancer: results from a monocentric retrospective study. BMC Gastroenterol 2024; 24:113. [PMID: 38491354 PMCID: PMC10943815 DOI: 10.1186/s12876-024-03168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/09/2024] [Indexed: 03/18/2024] Open
Abstract
PURPOSE This retrospective study aimed to investigate the changes in peripheral blood lymphocyte subsets before and after immunotherapy in patients with advanced gastric cancer and their relationship n with the therapeutic efficacy and clinical prognosis. METHODS Peripheral blood lymphocyte subsets, including CD4 + T cells, CD8 + T cells, CD4+/CD8 + ratio, NK cells, Treg cells, and B cells, were collected from 195 patients with advanced gastric cancer who were admitted to the First Hospital of Shanxi Medical University with immunotherapy from January 2020 to October 2021, at the time of diagnosis of advanced gastric cancer, before immunotherapy and after 3 cycles of immunotherapy. T-tests were used to examine the factors influencing the patients' peripheral blood lymphocyte subsets and the changes after immunotherapy. To examine the relationship between lymphocyte subsets and treatment outcomes, ROC curves were plotted using a logistic regression. Kaplan-Meier curve was drawn, and the Log Rank test was carried out to compare the differences in PFS between the different groups. Cox proportional hazards regression model was used to analyze the factors affecting PFS after calibration of other variables. RESULTS The proportion of peripheral blood lymphocyte subsets in patients with advanced gastric cancer was affected by age and PD-L1 level. Compared to the baseline, the treatment effective group had higher proportions of CD4 + T cells, a higher CD4+/CD8 + ratio, NK cells and Treg cells, and lower proportions of CD8 + T cells and B cells in the peripheral blood after three cycles of immunotherapy. In the treatment-naive group, there were no significant differences in the lymphocyte subsets. With cut-off values of 30.60% and 18.00%, baseline CD4 + T cell and NK cell ratios were independent predictors of immunotherapy efficacy and PFS. Treg cell ratio, gender, PD-L1 levels, and MMR status all predicted PFS independently. CONCLUSION The proportion of peripheral blood lymphocyte subsets was modified in patients who responded to PD-1 inhibitors. Different lymphocyte subpopulation levels can be used as biomarkers to predict immunotherapy efficacy and clinical prognosis in patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Xinyan Wang
- The First Clinical Medical College of Shanxi Medical University, No.56, Xinjian South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China
- Department of Oncology, The First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Xiaoling Liu
- Department of Special Medical, Shanxi Province Cancer Hospital, Taiyuan, Shanxi, 030013, China
| | - Huwei Dai
- The Second Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Junmei Jia
- Department of Oncology, The First Hospital of Shanxi Medical University, No.85, Jiefang South Road, Yingze District, Taiyuan, Shanxi, 030001, People's Republic of China.
| |
Collapse
|
13
|
Belderbos RA, Corneth OBJ, Dumoulin D, Hendriks RW, Aerts JGJV, Willemsen M. Atypical B cells (CD21-CD27-IgD-) correlate with lack of response to checkpoint inhibitor therapy in NSCLC. Eur J Cancer 2024; 196:113428. [PMID: 38039777 DOI: 10.1016/j.ejca.2023.113428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/03/2023]
Abstract
INTRODUCTION Checkpoint inhibitor (CI) therapy has revolutionized treatment for non-small cell lung cancer (NSCLC). However, a proportion of patients do not respond to CI therapy for unknown reasons. Although the current paradigm in anti-tumor immunity evolves around T cells, the presence of tertiary lymphoid structures and memory B cells has been positively correlated with response to CI therapy in NSCLC. In addition, double negative (DN) (CD27- IgD-) B cells have been shown to be abundant in NSCLC compared to healthy lung tissue and inversely correlate with the intratumoral presence of memory B cells. Nonetheless, no study has correlated DN B cells to survival in NSCLC. METHODS In this study, we evaluated the presence and phenotype of B cells in peripheral blood with flow cytometry of patients with NSCLC and mesothelioma before receiving CI therapy and correlated these with clinical outcome. RESULTS Non-responding patients showed decreased frequencies of B cells, yet increased frequencies of antigen-experienced CD21- DN (Atypical) B cells compared to responding patients and HC, which was confirmed in patients with mesothelioma treated with CI therapy. CONCLUSIONS These data show that the frequency of CD21- DN B cells correlates with lack of response to CI therapy in thoracic malignancies. The mechanism by which CD21- DN B cells hamper CI therapy remains unknown. Our findings support the hypothesis that CD21- DN B cells resemble phenotypically identical exhausted B cells that are seen in chronic infection or function as antigen presenting cells that induce regulatory T cells.
Collapse
Affiliation(s)
- R A Belderbos
- Department of Pulmonary Medicine, the Netherlands; Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, the Netherlands.
| | | | - D Dumoulin
- Department of Pulmonary Medicine, the Netherlands; Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, the Netherlands
| | - R W Hendriks
- Department of Pulmonary Medicine, the Netherlands
| | - J G J V Aerts
- Department of Pulmonary Medicine, the Netherlands; Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, the Netherlands.
| | - M Willemsen
- Department of Pulmonary Medicine, the Netherlands; Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, the Netherlands
| |
Collapse
|
14
|
Lin X, Zong C, Zhang Z, Fang W, Xu P. Progresses in biomarkers for cancer immunotherapy. MedComm (Beijing) 2023; 4:e387. [PMID: 37799808 PMCID: PMC10547938 DOI: 10.1002/mco2.387] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
Currently, checkpoint inhibitor-based immunotherapy has emerged as prevailing treatment modality for diverse cancers. However, immunotherapy as a first-line therapy has not consistently yielded durable responses. Moreover, the risk of immune-related adverse events increases with combination regimens. Thus, the development of predictive biomarkers is needed to optimize individuals benefit, minimize risk of toxicities, and guide combination approaches. The greatest focus has been on tumor programmed cell death-ligand 1 (PD-L1), microsatellite instability (MSI), and tumor mutational burden (TMB). However, there remains a subject of debate due to thresholds variability and significant heterogeneity. Major unmet challenges in immunotherapy are the discovery and validation of predictive biomarkers. Here, we show the status of tumor PD-L1, MSI, TMB, and emerging data on novel biomarker strategies with oncogenic signaling and epigenetic regulation. Considering the exploration of peripheral and intestinal immunity has served as noninvasive alternative in predicting immunotherapy, this review also summarizes current data in systemic immunity, encompassing solute PD-L1 and TMB, circulating tumor DNA and infiltrating lymphocytes, routine emerging inflammatory markers and cytokines, as well as gut microbiota. This review provides up-to-date information on the evolving field of currently available biomarkers in predicting immunotherapy. Future exploration of novel biomarkers is warranted.
Collapse
Affiliation(s)
- Xuwen Lin
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineShantou University Medical CollegeShantouGuangdong ProvinceChina
| | - Chenyu Zong
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineZunyi Medical UniversityZunyiGuizhou ProvinceChina
| | - Zhihan Zhang
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
| | - Weiyi Fang
- Cancer Research InstituteSchool of Basic Medical ScienceSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdong ProvinceChina
| | - Ping Xu
- Department of Pulmonary and Critical Care MedicinePeking University Shenzhen HospitalShenzhenGuangdong ProvinceChina
- Department of Internal MedicineZunyi Medical UniversityZunyiGuizhou ProvinceChina
| |
Collapse
|
15
|
Perrot CY, Karampitsakos T, Herazo-Maya JD. Monocytes and macrophages: emerging mechanisms and novel therapeutic targets in pulmonary fibrosis. Am J Physiol Cell Physiol 2023; 325:C1046-C1057. [PMID: 37694283 PMCID: PMC10635664 DOI: 10.1152/ajpcell.00302.2023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Pulmonary fibrosis results from a plethora of abnormal pathogenetic events. In idiopathic pulmonary fibrosis (IPF), inhalational, environmental, or occupational exposures in genetically and epigenetically predisposed individuals trigger recurrent cycles of alveolar epithelial cell injury, activation of coagulation pathways, chemoattraction, and differentiation of monocytes into monocyte-derived alveolar macrophages (Mo-AMs). When these events happen intermittently and repeatedly throughout the individual's life cycle, the wound repair process becomes aberrant leading to bronchiolization of distal air spaces, fibroblast accumulation, extracellular matrix deposition, and loss of the alveolar-capillary architecture. The role of immune dysregulation in IPF pathogenesis and progression has been underscored in the past mainly after the disappointing results of immunosuppressant use in IPF patients; however, recent reports highlighting the prognostic and mechanistic roles of monocytes and Mo-AMs revived the interest in immune dysregulation in IPF. In this review, we will discuss the role of these cells in the onset and progression of IPF, as well as potential targeted therapies.
Collapse
Affiliation(s)
- Carole Y Perrot
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Theodoros Karampitsakos
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Jose D Herazo-Maya
- Ubben Center for Pulmonary Fibrosis Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
16
|
Yu Z, Qin L, Yu G. The progresses of relevant factors on the efficacy of immune checkpoint inhibitors in the non-small cell lung cancer patients. Cancer Treat Res Commun 2023; 37:100758. [PMID: 37776694 DOI: 10.1016/j.ctarc.2023.100758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 10/02/2023]
Abstract
Lung cancer has the highest mortality rate of all cancers worldwide. Although immune checkpoint inhibitor (ICI)-based therapy can improve the survival of patients with lung cancer, its efficacy is affected by many factors. Therefore, it is necessary to identify factors that affect the efficacy of ICI-based treatment and establish a model for predicting drug response and resistance before and during treatment for individualized and accurate treatment of patients. This review summarizes the clinical and biological factors related to ICI-based treatment of non-small cell lung cancer (NSCLC) and the recent research progress of predictive models for assessing ICI efficacy.
Collapse
Affiliation(s)
- Zhaoqing Yu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Li Qin
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Guifang Yu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
17
|
Zhang E, Ding C, Li S, Zhou X, Aikemu B, Fan X, Sun J, Zheng M, Yang X. Roles and mechanisms of tumour-infiltrating B cells in human cancer: a new force in immunotherapy. Biomark Res 2023; 11:28. [PMID: 36890557 PMCID: PMC9997025 DOI: 10.1186/s40364-023-00460-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/28/2023] [Indexed: 03/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting PD-1 or PD-L1 have emerged as a revolutionary treatment strategy for human cancer patients. However, as the response rate to ICI therapy varies widely among different types of tumours, we are beginning to gain insight into the mechanisms as well as biomarkers of therapeutic response and resistance. Numerous studies have highlighted the dominant role of cytotoxic T cells in determining the treatment response to ICIs. Empowered by recent technical advances, such as single-cell sequencing, tumour-infiltrating B cells have been identified as a key regulator in several solid tumours by affecting tumour progression and the response to ICIs. In the current review, we summarized recent advances regarding the role and underlying mechanisms of B cells in human cancer and therapy. Some studies have shown that B-cell abundance in cancer is positively associated with favourable clinical outcomes, while others have indicated that they are tumour-promoting, implying that the biological function of B cells is a complex landscape. The molecular mechanisms involved multiple aspects of the functions of B cells, including the activation of CD8+ T cells, the secretion of antibodies and cytokines, and the facilitation of the antigen presentation process. In addition, other crucial mechanisms, such as the functions of regulatory B cells (Bregs) and plasma cells, are discussed. Here, by summarizing the advances and dilemmas of recent studies, we depicted the current landscape of B cells in cancers and paved the way for future research in this field.
Collapse
Affiliation(s)
- Enkui Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Batuer Aikemu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaodong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of General Surgery & Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, 518055, China.
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of General Surgery & Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, 518055, China.
| |
Collapse
|
18
|
Lin X, Chen X, Long X, Zeng C, Zhang Z, Fang W, Xu P. New biomarkers exploration and nomogram construction of prognostic and immune-related adverse events of advanced non-small cell lung cancer patients receiving immune checkpoint inhibitors. Respir Res 2023; 24:64. [PMID: 36849947 PMCID: PMC9972722 DOI: 10.1186/s12931-023-02370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/19/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are regarded as the most promising treatment for advanced-stage non-small cell lung cancer (aNSCLC). Unfortunately, there has been no unified accuracy biomarkers and systematic model specifically identified for prognostic and severe immune-related adverse events (irAEs). Our goal was to discover new biomarkers and develop a publicly accessible method of identifying patients who may maximize benefit from ICIs. METHODS This retrospective study enrolled 138 aNSCLC patients receiving ICIs treatment. Progression-free survival (PFS) and severe irAEs were end-points. Data of demographic features, severe irAEs, and peripheral blood inflammatory-nutritional and immune indices before and after 1 or 2 cycles of ICIs were collected. Independent factors were selected by least absolute shrinkage and selection operator (LASSO) combined with multivariate analysis, and incorporated into nomogram construction. Internal validation was performed by applying area under curve (AUC), calibration plots, and decision curve. RESULTS Three nomograms with great predictive accuracy and discriminatory power were constructed in this study. Among them, two nomograms based on combined inflammatory-nutritional biomarkers were constructed for PFS (1 year-PFS and 2 year-PFS) and severe irAEs respectively, and one nomogram was constructed for 1 year-PFS based on immune indices. ESCLL nomogram (based on ECOG PS, preSII, changeCAR, changeLYM and postLDH) was constructed to assess PFS (1-, 2-year-AUC = 0.893 [95% CI 0.837-0.950], 0.828 [95% CI 0.721-0.935]). AdNLA nomogram (based on age, change-dNLR, changeLMR and postALI) was constructed to predict the risk of severe irAEs (AUC = 0.762 [95% CI 0.670-0.854]). NKT-B nomogram (based on change-CD3+CD56+CD16+NKT-like cells and change-B cells) was constructed to assess PFS (1-year-AUC = 0.872 [95% CI 0.764-0.965]). Although immune indices could not be modeled for severe irAEs prediction due to limited data, we were the first to find CD3+CD56+CD16+NKT-like cells were not only correlated with PFS but also associated with severe irAEs, which have not been reported in the study of aNSCLC-ICIs. Furthermore, our study also discovered higher change-CD4+/CD8+ ratio was significantly associated with severe irAEs. CONCLUSIONS These three new nomograms proceeded from non-invasive and straightforward peripheral blood data may be useful for decisions-making. CD3+CD56+CD16+NKT-like cells were first discovered to be an important biomarker for treatment and severe irAEs, and play a vital role in distinguishing the therapy response and serious toxicity of ICIs.
Collapse
Affiliation(s)
- Xuwen Lin
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, 518034, Guangdong, China
- Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Xi Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, 518034, Guangdong, China
- Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Xiang Long
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, 518034, Guangdong, China
| | - Chao Zeng
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, 518034, Guangdong, China
| | - Zhihan Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, 518034, Guangdong, China
| | - Weiyi Fang
- Cancer Research Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, China.
| | - Ping Xu
- Department of Pulmonary and Critical Care Medicine, Peking University Shenzhen Hospital, Shenzhen, 518034, Guangdong, China.
| |
Collapse
|
19
|
Jia H, Tang WJ, Sun L, Wan C, Zhou Y, Shen WZ. Pan-cancer analysis identifies proteasome 26S subunit, ATPase (PSMC) family genes, and related signatures associated with prognosis, immune profile, and therapeutic response in lung adenocarcinoma. Front Genet 2023; 13:1017866. [PMID: 36699466 PMCID: PMC9868736 DOI: 10.3389/fgene.2022.1017866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Proteasome 26S subunit, ATPase gene (PSMC) family members play a critical role in regulating protein degradation and are essential for tumor development. However, little is known about the integrative function and prognostic significance of the PSMC gene family members in lung cancer. Methods: First, we assessed the expression and prognostic features of six PSMC family members in pan-cancer from The Cancer Genome Atlas (TCGA) dataset. Hence, by focusing on the relationship between PSMC genes and the prognostic, genomic, and tumor microenvironment features in lung adenocarcinoma (LUAD), a PSMC-based prognostic signature was established using consensus clustering and multiple machine learning algorithms, including the least absolute shrinkage and selection operator (LASSO) Cox regression, CoxBoost, and survival random forest analysis in TCGA and GSE72094. We then validated it in three independent cohorts from GEO and estimated the correlation between risk score and clinical features: genomic features (alterations, tumor mutation burden, and copy number variants), immune profiles (immune score, TIDE score, tumor-infiltrated immune cells, and immune checkpoints), sensitivity to chemotherapy (GDSC, GSE42127, and GSE14814), and immunotherapy (IMvigor210, GSE63557, and immunophenoscore). Twenty-one patients with LUAD were included in our local cohort, and tumor samples were submitted for evaluation of risk gene and PD-L1 expression. Results: Nearly all six PSMC genes were overexpressed in pan-cancer tumor tissues; however, in LUAD alone, they were all significantly correlated with overall survival. Notably, they all shared a positive association with increased TMB, TIDE score, expression of immune checkpoints (CD276 and PVR), and more M1 macrophages but decreased B-cell abundance. A PSMC-based prognostic signature was established based on five hub genes derived from the differential expression clusters of PSMC genes, and it was used to dichotomize LUAD patients into high- and low-risk groups according to the median risk score. The area under the curve (AUC) values for predicting survival at 1, 3, and 5 years in the training cohorts were all >.71, and the predictive accuracy was also robust and stable in the GSE72094, GSE31210, and GSE13213 datasets. The risk score was significantly correlated with advanced tumor, lymph node, and neoplasm disease stages as an independent risk factor for LUAD. Furthermore, the risk score shared a similar genomic and immune feature as PSMC genes, and high-risk tumors exhibited significant genomic and chromosomal instability, a higher TIDE score but lower immune score, and a decreased abundance of B and CD8+ T cells. Finally, high-risk patients were suggested to be less sensitive to immunotherapy but had a higher possibility of responding to platinum-based chemotherapy. The LUAD samples from the local cohort supported the difference in the expression levels of these five hub genes between tumor and normal tissues and the correlation between the risk score and PD-L1 expression. Conclusion: Overall, our results provide deep insight into PSMC genes in LUAD, especially the prognostic effect and related immune profile that may predict therapeutic responses.
Collapse
Affiliation(s)
- Hui Jia
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Jin Tang
- Department of Nursing, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Sun
- Department of Interventional Radiology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chong Wan
- Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Yun Zhou
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Yun Zhou, ; Wei-Zhong Shen,
| | - Wei-Zhong Shen
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Yun Zhou, ; Wei-Zhong Shen,
| |
Collapse
|
20
|
Liu H, Li Z, Han X, Li Z, Zhao Y, Liu F, Zhu Z, Lv Y, Liu Z, Zhang N. The prognostic impact of tumor-infiltrating B lymphocytes in patients with solid malignancies: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2023; 181:103893. [PMID: 36481308 DOI: 10.1016/j.critrevonc.2022.103893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
This study reviewed the prognostic effect of tumor-infiltrating B lymphocytes (TIBLs) on solid malignancies, to determine the potential role of TIBLs in predicting cancer patient's prognosis and their response to immunotherapy. A total of 45 original papers involving 11,099 individual patients were included in this meta-analysis covering 7 kinds of cancer. The pooled results suggested that high levels of TIBLs were correlated with favorable OS in lung, esophageal, gastric, colorectal, liver, and breast cancer; improved RFS in lung cancer; and improved DFS in gastrointestinal neoplasms. Additionally, TIBLs were significantly correlated with negative lymphatic invasion in gastric cancer, small tumor size in hepatocellular carcinoma, and negative distant metastasis in colorectal cancer. Additionally, TIBLs were reported as a discriminative feature of patients treated with immunotherapy with improved survival. We concluded that TIBLs play a favorable prognostic role among the common solid malignancie, providing theoretical evidence for further prognosis prediction for solid tumors.
Collapse
Affiliation(s)
- Hao Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhuoqun Li
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xuan Han
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhujun Li
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Zhao
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Fenghua Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ziyu Zhu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi Lv
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Nana Zhang
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710049, China; National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
21
|
Ye Q, Guo NL. Inferencing Bulk Tumor and Single-Cell Multi-Omics Regulatory Networks for Discovery of Biomarkers and Therapeutic Targets. Cells 2022; 12:101. [PMID: 36611894 PMCID: PMC9818242 DOI: 10.3390/cells12010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
There are insufficient accurate biomarkers and effective therapeutic targets in current cancer treatment. Multi-omics regulatory networks in patient bulk tumors and single cells can shed light on molecular disease mechanisms. Integration of multi-omics data with large-scale patient electronic medical records (EMRs) can lead to the discovery of biomarkers and therapeutic targets. In this review, multi-omics data harmonization methods were introduced, and common approaches to molecular network inference were summarized. Our Prediction Logic Boolean Implication Networks (PLBINs) have advantages over other methods in constructing genome-scale multi-omics networks in bulk tumors and single cells in terms of computational efficiency, scalability, and accuracy. Based on the constructed multi-modal regulatory networks, graph theory network centrality metrics can be used in the prioritization of candidates for discovering biomarkers and therapeutic targets. Our approach to integrating multi-omics profiles in a patient cohort with large-scale patient EMRs such as the SEER-Medicare cancer registry combined with extensive external validation can identify potential biomarkers applicable in large patient populations. These methodologies form a conceptually innovative framework to analyze various available information from research laboratories and healthcare systems, accelerating the discovery of biomarkers and therapeutic targets to ultimately improve cancer patient survival outcomes.
Collapse
Affiliation(s)
- Qing Ye
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Nancy Lan Guo
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
22
|
Wu H, Chen C, Gu L, Li J, Yue Y, Lyu M, Cui Y, Zhang X, Liu Y, Zhu H, Liao X, Zhang T, Sun F, Hu W. B cell deficiency promotes the initiation and progression of lung cancer. Front Oncol 2022; 12:1006477. [PMID: 36249034 PMCID: PMC9556970 DOI: 10.3389/fonc.2022.1006477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Currently commercialized CAR-T cell therapies targeting CD19 and BCMA show great efficacy to cure B cell malignancies. However, intravenous infusion of these CAR-T cells severely destroys both transformed and normal B cells in most tissues and organs, in particular lung, leading to a critical question that what the impact of normal B cell depletion on pulmonary diseases and lung cancer is. Herein, we find that B cell frequency is remarkably reduced in both smoking carcinogen-treated lung tissues and lung tumors, which is associated with advanced cancer progression and worse patient survival. B cell depletion by anti-CD20 antibody significantly accelerates the initiation and progression of lung tumors, which is mediated by repressed tumor infiltration of T cells and macrophage elimination of tumor cells. These findings unveil the overall antitumor activity of B cells in lung cancer, providing novel insights into both mechanisms underlying lung cancer pathogenesis and clinical prevention post CAR-T cell therapy.
Collapse
Affiliation(s)
- Han Wu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Chen Chen
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lixing Gu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
- College of Science, Wuhan University of Science and Technology, Wuhan, China
| | - Jiapeng Li
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
- College of Science, Wuhan University of Science and Technology, Wuhan, China
| | - Yunqiang Yue
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Mengqing Lyu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yeting Cui
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoyu Zhang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yu Liu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Haichuan Zhu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Xinghua Liao
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Tongcun Zhang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Tongcun Zhang, ; Fan Sun, ; Weidong Hu,
| | - Fan Sun
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Tongcun Zhang, ; Fan Sun, ; Weidong Hu,
| | - Weidong Hu
- Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Tongcun Zhang, ; Fan Sun, ; Weidong Hu,
| |
Collapse
|
23
|
Single B Cell Gene Co-Expression Networks Implicated in Prognosis, Proliferation, and Therapeutic Responses in Non-Small Cell Lung Cancer Bulk Tumors. Cancers (Basel) 2022; 14:cancers14133123. [PMID: 35804895 PMCID: PMC9265014 DOI: 10.3390/cancers14133123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/14/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary This study presents novel insights on dysregulated B cell proliferation networks in non-small cell lung cancer (NSCLC). Within this network, a nine-gene signature demonstrated prognostic and predictive indications in more than 1400 NSCLC patients using their gene and protein expression profiles in bulk tumors. Furthermore, novel therapeutic candidates are identified to improve NSCLC treatment outcomes. Abstract In NSCLC, there is a pressing need for immunotherapy predictive biomarkers. The processes underlying B-cell dysfunction, as well as their prognostic importance in NSCLC, are unknown. Tumor-specific B-cell gene co-expression networks were constructed by comparing the Boolean implication modeling of single-cell RNA sequencing of NSCLC tumor B cells and normal B cells. Proliferation genes were selected from the networks using in vitro CRISPR-Cas9/RNA interfering (RNAi) screening data in more than 92 human NSCLC epithelial cell lines. The prognostic and predictive evaluation was performed using public NSCLC transcriptome and proteome profiles. A B cell proliferation and prognostic gene co-expression network was present only in normal lung B cells and missing in NSCLC tumor B cells. A nine-gene signature was identified from this B cell network that provided accurate prognostic stratification using bulk NSCLC tumor transcriptome (n = 1313) and proteome profiles (n = 103). Multiple genes (HLA-DRA, HLA-DRB1, OAS1, and CD74) differentially expressed in NSCLC B cells, peripheral blood lymphocytes, and tumor T cells had concordant prognostic indications at the mRNA and protein expression levels. The selected genes were associated with drug sensitivity/resistance to 10 commonly used NSCLC therapeutic regimens. Lestaurtinib was discovered as a potential repositioning drug for treating NSCLC.
Collapse
|
24
|
Carril-Ajuria L, Desnoyer A, Meylan M, Dalban C, Naigeon M, Cassard L, Vano Y, Rioux-Leclercq N, Chouaib S, Beuselinck B, Chabaud S, Barros-Monteiro J, Bougoüin A, Lacroix G, Colina-Moreno I, Tantot F, Boselli L, De Oliveira C, Fridman WH, Escudier B, Sautes-Fridman C, Albiges L, Chaput-Gras N. Baseline circulating unswitched memory B cells and B-cell related soluble factors are associated with overall survival in patients with clear cell renal cell carcinoma treated with nivolumab within the NIVOREN GETUG-AFU 26 study. J Immunother Cancer 2022; 10:jitc-2022-004885. [PMID: 35640928 PMCID: PMC9157347 DOI: 10.1136/jitc-2022-004885] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The phase II NIVOREN GETUG-AFU 26 study reported safety and efficacy of nivolumab in patients with metastatic clear cell renal cell carcinoma (m-ccRCC) in a 'real-world setting'. We conducted a translational-research program to determine whether specific circulating immune-cell populations and/or soluble factors at baseline were predictive of clinical outcomes in patients with m-ccRCC treated with nivolumab within the NIVOREN study. METHODS Absolute numbers of 106 circulating immune-cell populations were prospectively analyzed in patients treated at a single institution within the NIVOREN trial with available fresh-whole-blood, using dry formulation panels for multicolor flow cytometry. In addition, a panel of 14 predefined soluble factors was quantified for each baseline plasma sample using the Meso-Scale-Discovery immunoassay. The remaining patients with available plasma sample were used as a validation cohort for the soluble factor quantification analysis. Tumor immune microenvironment characterization of all patients included in the translational program of the study was available. The association of blood and tissue-based biomarkers, with overall survival (OS), progression-free survival (PFS) and response was analyzed. RESULTS Among the 44 patients, baseline unswitched memory B cells (NSwM B cells) were enriched in responders (p=0.006) and associated with improved OS (HR=0.08, p=0.002) and PFS (HR=0.54, p=0.048). Responders were enriched in circulating T follicular helper (Tfh) (p=0.027) and tertiary lymphoid structures (TLS) (p=0.043). Circulating NSwM B cells positively correlated with Tfh (r=0.70, p<0.001). Circulating NSwM B cells correlated positively with TLS and CD20 +B cells at the tumor center (r=0.59, p=0.044, and r=0.52, p=0.033) and inversely correlated with BCA-1/CXCL13 and BAFF (r=-0.55 and r=-0.42, p<0.001). Tfh cells also inversely correlated with BCA-1/CXCL13 (r=-0.61, p<0.001). IL-6, BCA-1/CXCL13 and BAFF significantly associated with worse OS in the discovery (n=40) and validation cohorts (n=313). CONCLUSION We report the first fresh blood immune-monitoring of patients with m-ccRCC treated with nivolumab. Baseline blood concentration of NSwM B cells was associated to response, PFS and OS in patients with m-ccRCC treated with nivolumab. BCA-1/CXCL13 and BAFF, inversely correlated to NSwM B cells, were both associated with worse OS in discovery and validation cohorts. Our data confirms a role for B cell subsets in the response to immune checkpoint blockade therapy in patients with m-ccRCC. Further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Lucia Carril-Ajuria
- Department of Cancer Medicine, Institut Gustave-Roussy, Villejuif, France.,Laboratory for Immunomonitoring in Oncology, Institut Gustave-Roussy, Villejuif, France
| | - Aude Desnoyer
- Laboratory for Immunomonitoring in Oncology, Institut Gustave-Roussy, Villejuif, France.,Faculté de Pharmacie, Université Paris-Saclay, Chatenay-Malabray, France
| | - Maxime Meylan
- Centre de Recherche des Cordeliers, Inserm UMR S1138, Paris, France
| | - Cécile Dalban
- Department of Biostatistics, Centre Leon Bernard, Lyon, France
| | - Marie Naigeon
- Faculté de Pharmacie, Université Paris-Saclay, Chatenay-Malabray, France.,Laboratoire d'immunomonitoring En Oncologie, Institut Gustave-Roussy, Villejuif, France.,Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicetre, France
| | - Lydie Cassard
- Laboratory for Immunomonitoring in Oncology, Institut Gustave-Roussy, Villejuif, France
| | - Yann Vano
- Centre de Recherche des Cordeliers, Inserm UMR S1138, Paris, France.,Service d'Oncologie Medicale, Hopital Europeen Georges Pompidou, Paris, France
| | - Nathalie Rioux-Leclercq
- Service Anatomie Etcytologie Pathologiques, CHU, Université de Rennes, Universite de Rennes 1, Rennes, France
| | - Salem Chouaib
- Department of Immunology, Gustave Roussy Institute, Villejuif, France
| | | | - Sylvie Chabaud
- Department of Biostatistics, Centre Leon Bernard, Lyon, France
| | | | - Antoine Bougoüin
- Centre de Recherche des Cordeliers, Inserm UMR S1138, Paris, France
| | | | | | | | - Lisa Boselli
- Laboratory for Immunomonitoring in Oncology, Institut Gustave-Roussy, Villejuif, France
| | - Caroline De Oliveira
- Laboratory for Immunomonitoring in Oncology, Institut Gustave-Roussy, Villejuif, France
| | | | - Bernard Escudier
- Department of Cancer Medicine, Institut Gustave-Roussy, Villejuif, France
| | | | - Laurence Albiges
- Department of Cancer Medicine, Institut Gustave-Roussy, Villejuif, France.,Faculté de Médecine, Université Paris-Saclay, Le Kremlin Bicetre, France
| | - Nathalie Chaput-Gras
- Laboratory for Immunomonitoring in Oncology, Institut Gustave-Roussy, Villejuif, France .,Faculté de Pharmacie, Université Paris-Saclay, Chatenay-Malabray, France
| |
Collapse
|