1
|
Kuchenreuther I, Clausen FN, Mazurie J, Paul S, Czubayko F, Mittelstädt A, Koch AK, Karabiber A, Hansen FJ, Arnold LS, Weisel N, Merkel S, Brunner M, Krautz C, Vera J, Grützmann R, Weber GF, David P. Increased Herpesvirus Entry Mediator Expression on Circulating Monocytes and Subsets Predicts Poor Outcomes in Pancreatic Ductal Adenocarcinoma Patients. Int J Mol Sci 2025; 26:2875. [PMID: 40243455 PMCID: PMC11988668 DOI: 10.3390/ijms26072875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is aggressive, with a 5-year survival rate of only 12.8%, and its increasing incidence in Western countries highlights the urgent need for better early-stage detection and treatment methods. Early diagnosis significantly improves the chances of survival, but non-specific symptoms and undetectable precursor lesions pose a major challenge. To date, there are no reliable screening tools to detect PDAC at an early stage. Herpesvirus entry mediator (HVEM) has already been proposed as a prognostic marker in numerous cancer types. Therefore, we investigated the role of HVEM in PDAC. Flow cytometry was used to analyze HVEM expression in immune cells and its inhibitory receptors (CD160 and BTLA) on T-cells, as well as its subsets in the peripheral blood of 57 diagnosed PDAC patients and 17 clinical controls. In addition, survival analyses were performed within the PDAC cohort, changes in HVEM expression were analyzed in relation to clinicopathological parameters, and a correlation analysis between HVEM expression and cytokine levels of IL-6 and IL-10 was conducted. Furthermore, HVEM expression on monocytes and their subsets was evaluated as a potential prognostic marker and compared with the prognostic utility of CA19-9. We found that HVEM expression is significantly elevated on immune cells, particularly on monocytes (p < 0.0001) and their subsets, in PDAC patients, and is associated with reduced survival (p = 0.0067) and clinicopathological features such as perineural, lymphovascular, and vascular invasion. Moreover, HVEM-expressing monocytes demonstrated superior predictive value compared to CA19-9, highlighting their potential as part of a combined screening tool for PDAC. In conclusion, HVEM on monocytes could serve as a novel prognostic marker for PDAC.
Collapse
MESH Headings
- Humans
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/blood
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/blood
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/diagnosis
- Female
- Male
- Middle Aged
- Monocytes/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/blood
- Pancreatic Neoplasms/mortality
- Prognosis
- Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/metabolism
- Antigens, CD/metabolism
- Receptors, Immunologic/metabolism
- Interleukin-10
- Adult
- Interleukin-6
- GPI-Linked Proteins
Collapse
Affiliation(s)
- Isabelle Kuchenreuther
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Finn-Niklas Clausen
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Johanne Mazurie
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Sushmita Paul
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.V.)
| | - Franziska Czubayko
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Anke Mittelstädt
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Ann-Kathrin Koch
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Alara Karabiber
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Frederik J. Hansen
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Lisa-Sophie Arnold
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Nadine Weisel
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Susanne Merkel
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Maximilian Brunner
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Christian Krautz
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
| | - Julio Vera
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; (S.P.); (J.V.)
| | - Robert Grützmann
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Georg F. Weber
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91052 Erlangen, Germany
| | - Paul David
- Department of Surgery, University Hospital Erlangen, 91054 Erlangen, Germany; (I.K.); (F.-N.C.); (J.M.); (F.C.); (A.M.); (A.-K.K.); (A.K.); (F.J.H.); (L.-S.A.); (N.W.); (S.M.); (M.B.); (C.K.); (R.G.); (P.D.)
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
2
|
Atwell S, Cheung TC, Conner EM, Ho C, Huang J, Harryman EL, Lieu R, Lim S, Lin WW, Ruiz DI, Vendel AC, Ware CF. Quantitative detection of the HVEM-BTLA checkpoint receptor cis-complex in human lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae057. [PMID: 40073094 DOI: 10.1093/jimmun/vkae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/11/2024] [Indexed: 03/14/2025]
Abstract
The herpesvirus entry mediator (HVEM) (TNFRSF14) engagement of the checkpoint inhibitory receptor B and T lymphocyte attenuator (BTLA) limits immune responses of T and B lymphocytes. HVEM and BTLA form signaling complexes in trans and when coexpressed, complexes in cis, creating a unique immune checkpoint. The function of the HVEM-BTLA cis-complex is not well understood primarily due to a lack of reagents that specifically measure the HVEM-BTLA cis-complex. We describe here a method to generate antibodies to receptor-ligand complexes using fusion immunogens, in this case, a BTLA-HVEM fusion protein. We identified 2 closely related antibodies that specifically recognize the HVEM-BTLA complex on the cell surface. In experiments utilizing the anti-HVEM-BTLA complex-specific antibody together with subunit-specific BTLA monoclonal antibodies, we were able to determine the precise ratio of free to cis-complexed BTLA on subpopulations of human lymphocytes. This is the first direct quantification of the HVEM-BTLA cis-complex. The method described here should apply to the detection of other receptor-ligand complexes.
Collapse
Affiliation(s)
- Shane Atwell
- Biotechnology Discovery Research, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, United States
- Discovery Biology, Neurocrine Bioscience, San Diego, CA, United States
| | - Timothy C Cheung
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Elaine M Conner
- Biotechnology Discovery Research, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, United States
| | - Carolyn Ho
- Biotechnology Discovery Research, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, United States
| | - Jiawen Huang
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Erin L Harryman
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Ricky Lieu
- Biotechnology Discovery Research, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, United States
| | - Stacie Lim
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Wai W Lin
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Diana I Ruiz
- Biotechnology Discovery Research, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, United States
| | - Andrew C Vendel
- Immunology Discovery Research, Eli Lilly and Company, Lilly Biotechnology Center, San Diego, CA, United States
| | - Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
3
|
Gherardi L, Aubergeon L, Sayah M, Fauny JD, Dumortier H, Monneaux F. Targeting B and T Lymphocyte Attenuator Regulates Lupus Disease Development in NZB/W Mice. Immunotargets Ther 2025; 14:7-23. [PMID: 39845702 PMCID: PMC11750947 DOI: 10.2147/itt.s490573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/12/2024] [Indexed: 01/24/2025] Open
Abstract
Purpose The co-inhibitory receptor B and T Lymphocyte Attenuator (BTLA) negatively regulates B and T cell activation. We have previously shown an altered BTLA expression by regulatory T cells and an impaired capacity of BTLA to inhibit CD4+ T cell activation in lupus patients. In this study, we analyzed BTLA expression and function in the NZB/W lupus-mouse model and examined the therapeutic potential of BTLA targeting. Methods BTLA expression and function were analyzed in young (10-12-week-old) and old-diseased NZB/W mice (>35-week-old with proteinuria) in comparison to age-related BALB/W control mice. 20-22 weeks old NZB/W mice (n=10) were injected i.p with 3 mg/kg, twice a week for ten weeks, with the anti-BTLA antibody 6F7 or its isotype control. Results In old-diseased NZB/W mice, BTLA expression is slightly modified in B cell subsets whereas CD4+ T cells display impaired BTLA functionality. Administration of the 6F7 anti-BTLA antibody into 20-22 week-old NZB/W mice resulted in a delayed onset of proteinuria (p<0.01), limited kidney damages (p<0.05) and an increased survival rate (p<0.01) compared to isotype-treated mice. This beneficial effect was associated with a decrease in circulating B cell and spleen follicular B cell numbers. Regarding its mode of action, we demonstrated that the 6F7 antibody is not a depleting antibody and does not block HVEM binding to BTLA, but instead induces BTLA down modulation and exhibits in vivo agonist activity. Conclusion Overall, our data confirm the involvement of BTLA in lupus pathogenesis and provide the first evidence that BTLA is a potential therapeutic target for the treatment of lupus.
Collapse
Affiliation(s)
- Léa Gherardi
- CNRS UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, 67084, France
| | - Lucie Aubergeon
- CNRS UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, 67084, France
| | - Mélanie Sayah
- CNRS UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, 67084, France
| | - Jean-Daniel Fauny
- CNRS UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, 67084, France
| | - Hélène Dumortier
- CNRS UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, 67084, France
| | - Fanny Monneaux
- CNRS UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, 67084, France
| |
Collapse
|
4
|
Aubergeon L, Felten R, Gottenberg JE, Dumortier H, Monneaux F. Subset of DN Memory B Cells Expressing Low Levels of Inhibitory Receptor BTLA Is Enriched in SLE Patients. Cells 2024; 13:2063. [PMID: 39768154 PMCID: PMC11674271 DOI: 10.3390/cells13242063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The dialogue between T and B cells can be regulated by different mechanisms, such as co-inhibitory receptors, which therefore play a crucial role in preventing autoimmune diseases such as systemic lupus erythematosus (SLE). B and T lymphocyte attenuator (BTLA) is a co-inhibitory receptor expressed on many myeloid and lymphoid cells. Although peripheral B cells express a very high amount of BTLA, previous works in the context of autoimmunity mainly focused on T cells, and whether BTLA expression on B cells plays a role in the lupus pathogenesis is still unclear. In the present study, we examine the expression of BTLA, as well as its ligand HVEM (Herpesvirus Entry Mediator), on various B cell subsets in lupus patients compared to healthy controls (HCs). We evidenced the existence of double-negative (DN; IgD-CD27-) memory B cells expressing very low levels of BTLA, which are enhanced in active lupus patients. An in-depth analysis revealed that these BTLAlow DN cells mainly correspond to the newly reported DN3 B cell subset, originally described in the context of SARS-CoV2 infection. These cells display an activated and antibody-secreting cell phenotype, and we propose that their low BTLA expression may favor their expansion and rapid differentiation into plasmablasts in lupus patients.
Collapse
Affiliation(s)
- Lucie Aubergeon
- Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, CNRS UPR3572, 67084 Strasbourg, France
| | - Renaud Felten
- Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, CNRS UPR3572, 67084 Strasbourg, France
- Rheumatology Department, National Reference Center for Autoimmune Diseases, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Jacques-Eric Gottenberg
- Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, CNRS UPR3572, 67084 Strasbourg, France
- Rheumatology Department, National Reference Center for Autoimmune Diseases, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Hélène Dumortier
- Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, CNRS UPR3572, 67084 Strasbourg, France
| | - Fanny Monneaux
- Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, CNRS UPR3572, 67084 Strasbourg, France
| |
Collapse
|
5
|
Chen YJ, Chen Y, Chen P, Jia YQ, Wang H, Hong XP. Characteristics of PD-1 +CD4 + T cells in peripheral blood and synovium of rheumatoid arthritis patients. Clin Transl Immunology 2024; 13:e70006. [PMID: 39345753 PMCID: PMC11427813 DOI: 10.1002/cti2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Objectives PD-1 plays a crucial role in the immune dysregulation of rheumatoid arthritis (RA), but the specific characteristics of PD-1+CD4+ T cells remain unclear and require further investigation. Methods Circulating PD-1+CD4+ T cells from RA patients were analysed using flow cytometry. Plasma levels of soluble PD-1 (sPD-1) were measured using enzyme-linked immunosorbent assay (ELISA). Single-cell RNA sequence data from peripheral blood mononuclear cells (PBMCs) and synovial tissue of patients were obtained from the GEO and the ImmPort databases. Bioinformatics analyses were performed in the R studio to characterise PD-1+CD4+ T cells. Expression of CCR7, KLF2 and IL32 in PD-1+CD4+ T cells was validated by flow cytometry. Results RA patients showed an elevated proportion of PD-1+CD4+ T cells in peripheral blood, along with increased plasma sPD-1 levels, which positively correlated with TNF-α and erythrocyte sedimentation rate. Bioinformatic analysis revealed PD-1 expression on CCR7+CD4+ T cells in PBMCs, and on both CCR7+CD4+ T cells and CXCL13+CD4+ T cells in RA synovium. PD-1 was co-expressed with CCR7, KLF2, and IL32 in peripheral CD4+ T cells. In synovium, PD-1+CCR7+CD4+ T cells had higher expression of TNF and LCP2, while PD-1+CXCL13+CD4+ T cells showed elevated levels of ARID5A and DUSP2. PD-1+CD4+ T cells in synovium also appeared to interact with B cells and fibroblasts through BTLA and TNFSF signalling pathways. Conclusion This study highlights the increased proportion of PD-1+CD4+ T cells and elevated sPD-1 levels in RA. The transcriptomic profiles and signalling networks of PD-1+CD4+ T cells offer new insights into their role in RA pathogenesis.
Collapse
Affiliation(s)
- Yan-Juan Chen
- Department of Rheumatology and Immunology The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital Shenzhen China
- Integrated Chinese and Western Medicine Postdoctoral Research Station Jinan University Guangzhou China
| | - Yong Chen
- Department of Rheumatology and Immunology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Ping Chen
- Department of Rheumatology and Immunology Shenzhen People's Hospital Shenzhen China
| | - Yi-Qun Jia
- Stomatology Center, The Second Clinical Medical College of Jinan University Shenzhen People's Hospital Shenzhen China
| | - Hua Wang
- Department of Orthopaedics, The Second Clinical Medical College of Jinan University, The First Afiliated Hospital of Southern University of Science and Technology Shenzhen People's Hospital Shenzhen China
| | - Xiao-Ping Hong
- Department of Rheumatology and Immunology The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital Shenzhen China
| |
Collapse
|
6
|
Ciesielska-Figlon K, Lisowska KA. The Role of the CD28 Family Receptors in T-Cell Immunomodulation. Int J Mol Sci 2024; 25:1274. [PMID: 38279272 PMCID: PMC10816057 DOI: 10.3390/ijms25021274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The CD28 family receptors include the CD28, ICOS (inducible co-stimulator), CTLA-4 (cytotoxic T-lymphocyte antigen-4), PD-1 (programmed cell death protein 1), and BTLA (B- and T-lymphocyte attenuator) molecules. They characterize a group of molecules similar to immunoglobulins that control the immune response through modulating T-cell activity. Among the family members, CD28 and ICOS act as enhancers of T-cell activity, while three others-BTLA, CTLA-4, and PD-1-function as suppressors. The receptors of the CD28 family interact with the B7 family of ligands. The cooperation between these molecules is essential for controlling the course of the adaptive response, but it also significantly impacts the development of immune-related diseases. This review introduces the reader to the molecular basis of the functioning of CD28 family receptors and their impact on T-cell activity.
Collapse
|
7
|
Wojciechowicz K, Spodzieja M, Lisowska KA, Wardowska A. The role of the BTLA-HVEM complex in the pathogenesis of autoimmune diseases. Cell Immunol 2022; 376:104532. [PMID: 35537322 DOI: 10.1016/j.cellimm.2022.104532] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
|