1
|
Sutedja JC, de Liyis BG, Saraswati MR. Gamma-aminobutyric acid for delaying type 1 diabetes mellitus: an update. Ann Pediatr Endocrinol Metab 2024; 29:142-151. [PMID: 38956751 PMCID: PMC11220392 DOI: 10.6065/apem.2346184.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 11/28/2023] [Indexed: 07/04/2024] Open
Abstract
The current gold-standard management of hyperglycemia in individuals with type 1 diabetes mellitus (T1DM) is insulin therapy. However, this therapy is associated with a high incidence of complications, and delaying the onset of this disease produces a substantially positive impact on quality of life for individuals with a predisposition to T1DM, especially children. This review aimed to assess the use of gamma-aminobutyric acid (GABA) to delay the onset of T1DM in children. GABA produces protective and proliferative effects in 2 ways, β cell and immune cell modulation. Various in vitro and in vivo studies have shown that GABA induces proliferation of β cells, increases insulin levels, inhibits β-cell apoptosis, and suppresses T helper 1 cell activity against islet antigens. Oral GABA is safe as no serious adverse effects were reported in any of the studies included in this review. These findings demonstrate promising results for the use of GABA treatment to delay T1DM, specifically in genetically predisposed children, through immunoregulatory effects and the ability to induce β-cell proliferation.
Collapse
Affiliation(s)
| | | | - Made Ratna Saraswati
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Udayana University/Prof. IGNG Ngoerah General Hospital, Bali, Indonesia
| |
Collapse
|
2
|
Igoe A, Merjanah S, Harley ITW, Clark DH, Sun C, Kaufman KM, Harley JB, Kaelber DC, Scofield RH. Association between systemic lupus erythematosus and myasthenia gravis: A population-based National Study. Clin Immunol 2024; 260:109810. [PMID: 37949200 DOI: 10.1016/j.clim.2023.109810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) and myasthenia gravis (MG) are autoimmune diseases. Previous case reports and case series suggest an association may exist between these diseases, as well as an increased risk of SLE after thymectomy for MG. We undertook this study to determine whether SLE and MG were associated in large cohorts. METHODS We searched the IBM Watson Health Explorys platform and the Department of Veterans Affairs Million Veteran Program (MVP) database for diagnoses of SLE and MG. In addition, we examined subjects enrolled in the Lupus Family Registry and Repository (LFRR) as well as controls for a diagnosis of MG. RESULTS Among 59,780,210 individuals captured in Explorys, there were 25,750 with MG and 65,370 with SLE. 370 subjects had both. Those with MG were >10 times more likely to have SLE than those without MG. Those with both diseases were more likely to be women, African American, and at a younger age than MG subjects without SLE. In addition, the MG patients who underwent thymectomy had an increased risk of SLE compared to MG patients who had not undergone thymectomy (OR 3.11, 95% CI: 2.12 to 4.55). Autoimmune diseases such as pernicious anemia and miscellaneous comorbidities such as chronic kidney disease were significantly more common in MG patients who developed SLE. In the MVP, SLE and MG were also significantly associated. Association of SLE and MG in a large SLE cohort with rigorous SLE classification confirmed the association of SLE with MG at a similar level. CONCLUSION While the number of patients with both MG and SLE is small, SLE and MG are strongly associated together in very large databases and a large SLE cohort.
Collapse
Affiliation(s)
- Ann Igoe
- OhioHealth Hospital, Rheumatology Department, Mansfield, OH 44903, USA
| | - Sali Merjanah
- Boston University Medical Center, Section of Rheumatology, Department of Medicine, Boston, MA 02118, USA
| | - Isaac T W Harley
- Division of Rheumatology, Departments of Medicine and Immunology/Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Medicine Service, Rheumatology Section, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Dennis H Clark
- Research Service, US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Celi Sun
- Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Kenneth M Kaufman
- Research Service, US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - John B Harley
- Research Service, US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA; Cincinnati Education and Research for Veterans Foundation, Cincinnati, OH, USA
| | - David C Kaelber
- Departments of Internal Medicine, Pediatrics, and Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine and The Center for Clinical Informatics Research and Education, The MetroHealth System, Cleveland, OH 44109, USA
| | - R Hal Scofield
- Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA; Department of Medicine, University of Oklahoma Health Sciences Center, Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, and Medical/Research Service, and Medicine Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
3
|
Tang CL, Lian Z, Ding FR, Liang J, Li XY. Schistosoma-related molecules as a new strategy to combat type 1 diabetes through immune regulation. Parasitol Int 2024; 98:102818. [PMID: 37848126 DOI: 10.1016/j.parint.2023.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/08/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
The study of immune regulation mechanisms induced by parasites may help develop new treatment methods for inflammatory diseases including type 1 diabetes, which is related to type 1 immune responses. The negative correlation between schistosomiasis infection and type 1 diabetes has been confirmed, and the mechanism of Schistosoma-mediated prevention of type 1 diabetes may be related to the adaptive and innate immune systems. Schistosoma-related molecules affect immune cell composition and macrophage polarization and stimulate an increase in natural killer T cells. Furthermore, Schistosoma-related molecules can regulate the adaptive immune responses related to the prevention of type 1 diabetes and change the Th1/Th2 and Th17/Treg axis. Our previous review showed the role of regulatory T cells in the protective of type 1 diabetes mediated by Schistosoma. Here, we aim to review the other mechanisms of schistosomiasis infection and Schistosoma-related products in regulating the immune response associated with the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China
| | - Zhan Lian
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan 430030, China
| | - Fan-Rong Ding
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China
| | - Jun Liang
- Wuhan Pulmonary Hospital, Wuhan Institute for Tuberculosis Control, Wuhan 430030, China.
| | - Xiang-You Li
- Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China.
| |
Collapse
|
4
|
Lemos JRN, Poggioli R, Ambut J, Bozkurt NC, Alvarez AM, Padilla N, Vendrame F, Ricordi C, Baidal DA, Alejandro R. Impact of GAD65 and IA2 autoantibodies on islet allograft survival. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1269758. [PMID: 38028981 PMCID: PMC10679328 DOI: 10.3389/fcdhc.2023.1269758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
Introduction Islet transplantation (ITx) shows promise in treating T1D, but the role of islet autoantibodies on graft survival has not been clearly elucidated. We aimed to analyze the effect of GAD65 and IA2 autoantibody status on graft survival and attainment of insulin independence in subjects with T1D who underwent ITx. Method We conducted a retrospective cohort study on 47 ITx recipients from 2000 to 2018. Islet infusion was performed via intrahepatic portal (n=44) or onto the omentum via laparoscopic approach (n=3). Immunosuppression involved anti-IL2 receptor antibody, anti-TNF, and dual combinations of sirolimus, tacrolimus, or mycophenolate mofetil (Edmonton-like) in 38 subjects (80.9%). T-cell depletion induction with Edmonton-like maintenance was used in 9 subjects (19%). GAD65 and IA2 autoantibodies were assessed pre-transplant and post-transplant (monthly) until graft failure, and categorized as persistently negative, persistently positive, or seroconverters. Graft survival was analyzed using U-Mann-Whitney test, and Quade's nonparametric ANCOVA adjusted for confounders. Kaplan-Meier and Log-Rank tests were employed to analyze attainment of insulin independence. P value <0.05 indicated statistical significance. Results ITx recipients with persistent autoantibody negativity (n = 21) showed longer graft function (98 [61 - 182] months) than those with persistent autoantibody positivity (n = 18; 38 [13 - 163] months), even after adjusting for immunosuppressive induction protocol (P = 0.027). Seroconverters (n=8) had a median graft survival time of 73 (7.7 - 167) months, which did not significantly differ from the other 2 groups. Subjects with persistently single antibody positivity to GAD65 (n = 8) had shorter graft survival compared to negative islet autoantibody (GAD65/IA2) subjects (n = 21; P = 0.016). Time of graft survival did not differ in subjects with single antibody positivity to IA2. The proportion of insulin independence attainment was similar irrespective of autoantibody status. Conclusion The persistence of islet autoantibodies, as markers of islet autoimmunity, may represent an underappreciated contributing factor to the failure of transplanted β cells. Whether induction with T-cell depletion may lead to improved graft survival, independent of islet autoantibody status, could not be evaluated in our cohort. Larger prospective studies are needed to further address the role of islet autoantibody status on islet graft survival.
Collapse
Affiliation(s)
- Joana R. N. Lemos
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Raffaella Poggioli
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jonathan Ambut
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nujen C. Bozkurt
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ana M. Alvarez
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nathalia Padilla
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francesco Vendrame
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Camillo Ricordi
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Cellular Transplantation, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - David A. Baidal
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rodolfo Alejandro
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
5
|
Matsuzaka Y, Yashiro R. Immune Modulation Using Extracellular Vesicles Encapsulated with MicroRNAs as Novel Drug Delivery Systems. Int J Mol Sci 2022; 23:ijms23105658. [PMID: 35628473 PMCID: PMC9146104 DOI: 10.3390/ijms23105658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 12/13/2022] Open
Abstract
Self-tolerance involves protection from self-reactive B and T cells via negative selection during differentiation, programmed cell death, and inhibition of regulatory T cells. The breakdown of immune tolerance triggers various autoimmune diseases, owing to a lack of distinction between self-antigens and non-self-antigens. Exosomes are non-particles that are approximately 50–130 nm in diameter. Extracellular vesicles can be used for in vivo cell-free transmission to enable intracellular delivery of proteins and nucleic acids, including microRNAs (miRNAs). miRNAs encapsulated in exosomes can regulate the molecular pathways involved in the immune response through post-transcriptional regulation. Herein, we sought to summarize and review the molecular mechanisms whereby exosomal miRNAs modulate the expression of genes involved in the immune response.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku 108-8639, Tokyo, Japan
- Correspondence: ; Tel.: +81-3-5449-5372
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan; or
| |
Collapse
|