1
|
Ding H, Xu X, Zhu Y, Ling X, Xu L. Inhibition of Alkbh5 Attenuates Lipopolysaccharide-Induced Lung Injury by Promoting Ccl1 m6A and Treg Recruitment. Cell Prolif 2025:e70032. [PMID: 40254698 DOI: 10.1111/cpr.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
This paper discussed the role of AlkB homologue 5 (Alkbh5) in the progression of lipopolysaccharide (LPS)-induced acute lung injury (ALI). LPS-induced ALI models were established in Alkbh5 knockout (KO) and knock-in (KI) mice. The m6A levels in lung tissues were analysed using m6A dot assays. The lung injury was analysed by determining ALI-related markers and histological staining. Mouse MLE12 cells were exposed to LPS for in vitro experiments, and the influence of Alkbh5 on cell viability, apoptosis and reactive oxygen species (ROS) production was analysed. RNA-seq analysis was performed to analyse gene changes upon Alkbh5 deficiency. Functions of the Alkbh5-C-C motif chemokine ligand 1 (Ccl1) cascade in ALI were further verified using the Alkbh5 antagonist DDO-2728 and a recombinant protein of Ccl1 (mCcl1). Alkbh5 was upregulated in lung tissues following LPS exposure. Alkbh5 knockout in mice mitigated LPS-induced lung injury, as indicated by reduced serum levels of lung injury markers and reduced immune cell infiltration, fibrosis and apoptosis. Conversely, Alkbh5 overexpression in mice resulted in reverse trends. In vitro, Alkbh5 knockdown in MLE12 cells enhanced cell viability while reducing cell apoptosis and ROS production. Mechanistically, Alkbh5 was found to bind to and destabilise Ccl1 mRNA, leading to increased Treg recruitment. Treatment with DDO-2728 or mCcl1 in mice increased Treg infiltration, thus improving lung tissue pathology and reducing lung injury. This study suggests that Alkbh5 is implicated in ALI progression by reducing Ccl1-mediated Treg recruitment, making it a promising target for ALI management.
Collapse
Affiliation(s)
- Hongdou Ding
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinnan Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaoyao Zhu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xinyu Ling
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Huang WB, Lai HZ, Long J, Ma Q, Fu X, You FM, Xiao C. Vagal nerve activity and cancer prognosis: a systematic review and meta-analysis. BMC Cancer 2025; 25:579. [PMID: 40165090 PMCID: PMC11960028 DOI: 10.1186/s12885-025-13956-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND The prognostic significance of vagal nerve (VN) activity, as measured by heart rate variability (HRV) in cancer patients remains a subject of debate. The aim of this meta-analysis was to evaluate the association between various HRV parameters and cancer prognosis. METHODS We conducted an extensive search of the PubMed, Embase, Cochrane, and Web of Science databases and compared the overall survival (OS) of cancer patients with high and low HRV. The data type was unadjusted hazard ratio (HR). Random or fixed-effects models were used to calculate the pooled HR along with the 95% Confidence Interval (CI). We used funnel plot analysis to evaluate potential publication bias. RESULTS A total of 11 cohort studies were included with 2539 participants. The methodological quality of the included studies is generally high. Compared with low standard deviation of normal-to-normal intervals (SDNN) group, higher SDNN was a protective factor for OS in patients with cancer (I2 = 66%, HR = 0.59, 95% CI: 0.46-0.75, P < 0.0001). Compared with low root mean square of successive differences (RMSSD) group. The prognostic value of RMSSD did not reach statistical significance (I2 = 0%, HR = 0.85, 95% CI: 0.70-1.03, P = 0.11). Among the frequency domain indicators, higher high-frequency power HRV (HF-HRV) and low-frequency power HRV (LF-HRV) were associated with significantly longer overall survival compared to the low HF-HRV and LF-HRV groups (I2 = 6%, HR = 0.59, 95% CI: 0.43-0.80, P = 0.006 and I2 = 74%, HR = 0.45, 95% CI: 0.22-0.93, P = 0.03). In the nonlinear indicators, higher maximal diagonal line length (Lmax), mean diagonal line length (Lmean), percent of recurrence (REC), and determinism (DET) were associated with poorer tumor OS. The funnel plot shows that there is no publication bias in the study. CONCLUSIONS The findings of this study demonstrate that HRV parameters, particularly SDNN, HF-HRV, and nonlinear indices, exhibit predictive value for prognosis in cancer. Furthermore, it can be inferred that elevated VN activity may predict prolonged survival outcomes. However, these findings should be interpreted with caution due to the heterogeneity observed across included studies. Future research should prioritize prospective studies with standardized measurement protocols to validate these associations.
Collapse
Affiliation(s)
- Wen-Bo Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Heng-Zhou Lai
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Long
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Ma
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Fu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng-Ming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Oncology Teaching and Research Office of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Chong Xiao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Oncology Teaching and Research Office of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
Brem S. Vagus nerve stimulation: Novel concept for the treatment of glioblastoma and solid cancers by cytokine (interleukin-6) reduction, attenuating the SASP, enhancing tumor immunity. Brain Behav Immun Health 2024; 42:100859. [PMID: 39512605 PMCID: PMC11541944 DOI: 10.1016/j.bbih.2024.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 11/15/2024] Open
Abstract
Immuno-oncology, specifically immune checkpoint inhibitors (ICIs), has revolutionized cancer care with dramatic, long-term responses and increased survival, including patients with metastatic cancer to the brain. Glioblastomas, and other primary brain tumors, are refractory to ICIs as monotherapy or in combination with standard therapy. The tumor microenvironment (TME) poses multiple biological hurdles: blood-brain barrier, immune suppression, heterogeneity, and tumor infiltration. Genomic analysis of the senescence-associated secretory phenotype (SASP) and preclinical models of glioma suggest that an exciting approach would entail reprogramming of the glioma microenvironment, attenuating the pro-inflammatory, pro-tumorigenic cytokines of the SASP, especially interleukin-6 (IL-6). A testable hypothesis now proposed is to modulate the immune system by harnessing the body's 'inflammatory reflex' to reduce cytokines. Vagus nerve stimulation can activate T cell immunity by the cholinergic, α7nicotinic acetylcholine receptor agonist (α7nAchR), and suppress IL-6 systemically, as well as other pro-inflammatory cytokines of the SASP, interleukin -1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). The hypothesis predicts that electrical activation of the vagus nerve, with cytokine reduction, in combination with ICIs, would convert an immune resistant ("cold") tumor to an immune responsive ("hot") tumor, and halt glioma progression. The hypothesis also envisions cancer as an immune "dysautonomia" whereby a therapeutic intervention, vagus nerve stimulation (VNS), resets the systemic and local cytokine levels. A prospective, randomized, phase II clinical trial, to confirm the hypothesis, is a logical, exigent, next step. Cytokine reduction by VNS could also be useful for other forms of human cancer, e.g., breast, colorectal, head and neck, lung, melanoma, ovarian, pancreatic, and prostate cancer, as the emerging field of "cancer neuroscience" shows a role for neural regulation of multiple tumor types. Because IL-6, and companion pro-inflammatory cytokines, participate in the initiation, progression, spread and recurrence of cancer, minimally invasive VNS could be employed to suppress glioma or cancer progression, while also mitigating depression and/or seizures, thereby enhancing quality of life. The current hypothesis reimagines glioma pathophysiology as a dysautonomia with the therapeutic objective to reset the autonomic nervous system and form an immune responsive state to halt tumor progression and prevent recurrence. VNS, as a novel method to control cancer, can be administered with ICIs, standard therapy, or in clinical trials, combined with emerging immunotherapy: dendritic cell, mRNA, or chimeric antigen receptor (CAR) T cell vaccines.
Collapse
Affiliation(s)
- Steven Brem
- University of Pennsylvania, Department of Neurosurgery, Perelman Center for Advanced Medicine, 15-141, 3400 Civic Center Blvd., Philadelphia, PA, 19104, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, United States
| |
Collapse
|
4
|
Zhang G, Yu T, Chai X, Zhang S, Liu J, Zhou Y, Yin D, Zhang C. Gradient Rotating Magnetic Fields Impairing F-Actin-Related Gene CCDC150 to Inhibit Triple-Negative Breast Cancer Metastasis by Inactivating TGF-β1/SMAD3 Signaling Pathway. RESEARCH (WASHINGTON, D.C.) 2024; 7:0320. [PMID: 38420580 PMCID: PMC10900498 DOI: 10.34133/research.0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and lethal malignancy in women, with a lack of effective targeted drugs and treatment techniques. Gradient rotating magnetic field (RMF) is a new technology used in oncology physiotherapy, showing promising clinical applications due to its satisfactory biosafety and the abundant mechanical force stimuli it provides. However, its antitumor effects and underlying molecular mechanisms are not yet clear. We designed two sets of gradient RMF devices for cell culture and animal handling. Gradient RMF exposure had a notable impact on the F-actin arrangement of MDA-MB-231, BT-549, and MDA-MB-468 cells, inhibiting cell migration and invasion. A potential cytoskeleton F-actin-associated gene, CCDC150, was found to be enriched in clinical TNBC tumors and cells. CCDC150 negatively correlated with the overall survival rate of TNBC patients. CCDC150 promoted TNBC migration and invasion via activation of the transforming growth factor β1 (TGF-β1)/SMAD3 signaling pathway in vitro and in vivo. CCDC150 was also identified as a magnetic field response gene, and it was marked down-regulated after gradient RMF exposure. CCDC150 silencing and gradient RMF exposure both suppressed TNBC tumor growth and liver metastasis. Therefore, gradient RMF exposure may be an effective TNBC treatment, and CCDC150 may emerge as a potential target for TNBC therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dachuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072 Xi’an, China
| | - Chenyan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 710072 Xi’an, China
| |
Collapse
|
5
|
Zhang J, Liu S, Chen X, Xu X, Xu F. Non-immune cell components in tumor microenvironment influencing lung cancer Immunotherapy. Biomed Pharmacother 2023; 166:115336. [PMID: 37591126 DOI: 10.1016/j.biopha.2023.115336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
Lung cancer (LC) is one of the leading causes of cancer-related deaths worldwide, with a significant morbidity and mortality rate, endangering human life and health. The introduction of immunotherapies has significantly altered existing cancer treatment strategies and is expected to improve immune responses, objective response rates, and survival rates. However, a better understanding of the complex immunological networks of LC is required to improve immunotherapy efficacy further. Tumor-associated antigens (TAAs) and tumor-specific antigens (TSAs) are significantly expressed by LC cells, which activate dendritic cells, initiate antigen presentation, and activate lymphocytes to exert antitumor activity. However, as tumor cells combat the immune system, an immunosuppressive microenvironment forms, enabling the enactment of a series of immunological escape mechanisms, including the recruitment of immunosuppressive cells and induction of T cell exhaustion to decrease the antitumor immune response. In addition to the direct effect of LC cells on immune cell function, the secreting various cytokines, chemokines, and exosomes, changes in the intratumoral microbiome and the function of cancer-associated fibroblasts and endothelial cells contribute to LC cell immune escape. Accordingly, combining various immunotherapies with other therapies can elicit synergistic effects based on the complex immune network, improving immunotherapy efficacy through multi-target action on the tumor microenvironment (TME). Hence, this review provides guidance for understanding the complex immune network in the TME and designing novel and effective immunotherapy strategies for LC.
Collapse
Affiliation(s)
- Jingtao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Shuai Liu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiubao Chen
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiangdong Xu
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Fei Xu
- Department of Geriatric Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
6
|
Abdullahi A, Wong TWL, Ng SSM. Putative role of non-invasive vagus nerve stimulation in cancer pathology and immunotherapy: Can this be a hidden treasure, especially for the elderly? Cancer Med 2023; 12:19081-19090. [PMID: 37587897 PMCID: PMC10557911 DOI: 10.1002/cam4.6466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 08/18/2023] Open
Abstract
Cancer is globally a disease of significant public health concern owing to its prevalence, and association with morbidity and mortality. Thus, cost-effective treatments for cancer are important to help reduce its significant morbidity and mortality. However, the current therapeutic options for cancer such as chemotherapy, radiotherapy, and surgery may produce serious adverse events such as nausea, vomiting, fatigue, and peripheral neuropathy, especially in the long term. In addition, these therapeutic options may not be well tolerated by the elderly especially those who are frail. The current article is aimed at discussing an alternative therapeutic option, non-invasive vagus nerve stimulation (VNS), and the roles it plays in cancer pathology and immunotherapy. The VNS does this by reducing oxidative stress via silent information regulator 1 (SIRT1); inhibiting inflammation via both hypothalamic-pituitary-axis (HPA) and the release of corticosteroid from the adrenal gland, and cholinergic anti-inflammatory pathway (CAP), and increasing vagal activity which helps in the regulation of cell proliferation, differentiation, apoptosis, and metabolism, and increase chance of survival. Furthermore, it helps with reducing complications due to cancer or its treatments such as postoperative ileus and severity of peripheral neuropathy induced by chemotherapy, and improves cancer-related fatigue, lymphopenia, and quality of life. These suggest that the importance of non-invasive VNS in cancer pathology and immunotherapy cannot be overemphasized. Therefore, considering the safety of non-invasive VNS and its cost-effectiveness, it is a therapeutic option worth trying for these patients, especially in combination with other therapies.
Collapse
Affiliation(s)
- Auwal Abdullahi
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityKowloonHong Kong Special Administrative RegionChina
| | - Thomson W. L. Wong
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityKowloonHong Kong Special Administrative RegionChina
| | - Shamay S. M. Ng
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityKowloonHong Kong Special Administrative RegionChina
| |
Collapse
|