2
|
He J, Xie X, Xiao Z, Qian W, Zhang L, Hou X. Piezo1 in Digestive System Function and Dysfunction. Int J Mol Sci 2023; 24:12953. [PMID: 37629134 PMCID: PMC10454946 DOI: 10.3390/ijms241612953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Piezo1, a non-selective cation channel directly activated by mechanical forces, is widely expressed in the digestive system and participates in biological functions physiologically and pathologically. In this review, we summarized the latest insights on Piezo1’s cellular effect across the entire digestive system, and discussed the role of Piezo1 in various aspects including ingestion and digestion, material metabolism, enteric nervous system, intestinal barrier, and inflammatory response within digestive system. The goal of this comprehensive review is to provide a solid foundation for future research about Piezo1 in digestive system physiologically and pathologically.
Collapse
Affiliation(s)
| | | | | | | | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| |
Collapse
|
3
|
Murali A, Sarkar RR. Mechano-immunology in microgravity. LIFE SCIENCES IN SPACE RESEARCH 2023; 37:50-64. [PMID: 37087179 DOI: 10.1016/j.lssr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 05/03/2023]
Abstract
Life on Earth has evolved to thrive in the Earth's natural gravitational field; however, as space technology advances, we must revisit and investigate the effects of unnatural conditions on human health, such as gravitational change. Studies have shown that microgravity has a negative impact on various systemic parts of humans, with the effects being more severe in the human immune system. Increasing costs, limited experimental time, and sample handling issues hampered our understanding of this field. To address the existing knowledge gap and provide confidence in modelling the phenomena, in this review, we highlight experimental works in mechano-immunology under microgravity and different computational modelling approaches that can be used to address the existing problems.
Collapse
Affiliation(s)
- Anirudh Murali
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development, CSIR - National Chemical Laboratory, Pune, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Hasebe R, Murakami K, Harada M, Halaka N, Nakagawa H, Kawano F, Ohira Y, Kawamoto T, Yull FE, Blackwell TS, Nio-Kobayashi J, Iwanaga T, Watanabe M, Watanabe N, Hotta H, Yamashita T, Kamimura D, Tanaka Y, Murakami M. ATP spreads inflammation to other limbs through crosstalk between sensory neurons and interneurons. J Exp Med 2022; 219:213221. [PMID: 35579694 DOI: 10.1084/jem.20212019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 11/04/2022] Open
Abstract
Neural circuits between lesions are one mechanism through which local inflammation spreads to remote positions. Here, we show the inflammatory signal on one side of the joint is spread to the other side via sensory neuron-interneuron crosstalk, with ATP at the core. Surgical ablation or pharmacological inhibition of this neural pathway prevented inflammation development on the other side. Mechanistic analysis showed that ATP serves as both a neurotransmitter and an inflammation enhancer, thus acting as an intermediary between the local inflammation and neural pathway that induces inflammation on the other side. These results suggest blockade of this neural pathway, which is named the remote inflammation gateway reflex, may have therapeutic value for inflammatory diseases, particularly those, such as rheumatoid arthritis, in which inflammation spreads to remote positions.
Collapse
Affiliation(s)
- Rie Hasebe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Harada
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Nada Halaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Nakagawa
- Department of Molecular Neurosciences, Graduate School of Frontier Biosciences, Graduate School of Medicine, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Fuminori Kawano
- Department of Health and Sports Sciences, Graduate School of Medicine, and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yoshinobu Ohira
- Department of Health and Sports Sciences, Graduate School of Medicine, and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tadafumi Kawamoto
- Radioisotope Research Institute, Department of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Fiona E Yull
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | | | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuhiro Watanabe
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Harumi Hotta
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Toshihide Yamashita
- Department of Molecular Neurosciences, Graduate School of Frontier Biosciences, Graduate School of Medicine, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Group of Quantumimmunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan.,Group of Quantumimmunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|