1
|
Ding L, Peng L, Huang K, Qu S, Li D, Yao J, Yang F, Zhu H, Zhao S. Single cell transcriptomics reveals dysregulated immnue homeostasis in different stages in HPV-induced cutaneous squamous cell carcinoma. Exp Dermatol 2024; 33:e15178. [PMID: 39385326 DOI: 10.1111/exd.15178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/04/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
In order to explore the huge impact of impaired immnue homeostasis on the occurrence and development of cutaneous squamous cell carcinoma (cSCC), and investigate characterization of the cellular components and their changes which is crucial to understanding the pathologic process of HPV-induced cSCC, we diagnosed and followed up on a very rare HPV-induced cSCC patient who progressed at a very fast rate and transferred to death quickly. We performed single-cell RNA sequencing (scRNA-seq) of 11 379 cells from the skin tissues of this patient with four different skin statuses after HPV infection. Immunofluorescence experiments were used for validation. scRNA-seq identified that CD52+ HLA-DOA- macrophages only existed in paracancerous cutaneous squamous cell carcinoma (pc-cSCC) and cSCC tissue. Besides, immune cells including CD8+ exhausted T cells and CD4+ regulatory T cells as well as matrix cells like MMP1+, and MMP11+ fibroblasts were gradually increased. Meanwhile, COMP+ ASPN+ fibroblasts gradually decreased. Cell interaction analysis revealed enhancement in interactions between monocytes/macrophages, fibroblasts and tumour-specific keratinocytes. scRNA-seq was performed in HPV-induced cSCC for the first time, to explore the correlation between infection and tumour. It is the first time to study the development of tumours from different stages of infection in HPV-induced cSCC. In this study, the tumour itself and the tumour microenvironment were both analysed and explored. And it was validated in clinical samples from different patients. Our findings reveal the dynamic immnue homeostasis from normal skin to cSCC tissue, this alteration might drive HPV-induced cSCC.
Collapse
Affiliation(s)
- Liqing Ding
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Lanyuan Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shunlin Qu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Dongjie Li
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China
| | | | | | - Honglin Zhu
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Conde-Lopez C, Marripati D, Elkabets M, Hess J, Kurth I. Unravelling the Complexity of HNSCC Using Single-Cell Transcriptomics. Cancers (Basel) 2024; 16:3265. [PMID: 39409886 PMCID: PMC11475296 DOI: 10.3390/cancers16193265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous and the most common form of head and neck cancer, posing significant challenges for disease management. The objective of this review is to assess the utility of single-cell RNA sequencing (scRNAseq) in addressing these challenges by enabling a detailed characterization of the tumor microenvironment (TME) at the cellular level. METHODS This review compiles and analyzes current strategies that utilize scRNAseq and other single-cell technologies in HNSCC research. RESULTS For HNSCC etiology, scRNAseq allows for the construction of cellular atlases, characterization of different cell types, and investigation of genes and processes involved in cancer initiation, development, and progression within the TME. In terms of HNSCC diagnosis and prognosis, the resolution offered by scRNAseq enables the identification of cell type-specific signatures, enhancing prognostic models and disease stratifiers for patient outcome assessments. Regarding HNSCC treatment, scRNAseq provides insights into cellular responses to various treatments, including radiotherapy, chemotherapy, and immunotherapy, contributing to a better understanding of treatment efficacy and patient outcomes. CONCLUSIONS This review highlights the contributions of scRNAseq to HNSCC research, addressing its cellular and biological complexity, and emphasizes its potential for advancing research and clinical practice in other cancer types.
Collapse
Affiliation(s)
- Cristina Conde-Lopez
- Division Radiooncology/Radiobiology, German Cancer Research Center (DKFZ) Heidelberg, 69120 Heidelberg, Germany; (J.H.); (I.K.)
| | - Divyasree Marripati
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (D.M.); (M.E.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (D.M.); (M.E.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Jochen Hess
- Division Radiooncology/Radiobiology, German Cancer Research Center (DKFZ) Heidelberg, 69120 Heidelberg, Germany; (J.H.); (I.K.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Ina Kurth
- Division Radiooncology/Radiobiology, German Cancer Research Center (DKFZ) Heidelberg, 69120 Heidelberg, Germany; (J.H.); (I.K.)
| |
Collapse
|
3
|
Huang M, Cha Z, Liu R, Lin M, Gafoor NA, Kong T, Ge F, Chen W. Enhancing immunotherapy outcomes by targeted remodeling of the tumor microenvironment via combined cGAS-STING pathway strategies. Front Immunol 2024; 15:1399926. [PMID: 38817608 PMCID: PMC11137211 DOI: 10.3389/fimmu.2024.1399926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) represent a groundbreaking advance in the treatment of malignancies such as melanoma and non-small cell lung cancer, showcasing substantial therapeutic benefits. Nonetheless, the efficacy of ICIs is limited to a small subset of patients, primarily benefiting those with "hot" tumors characterized by significant immune infiltration. The challenge of converting "cold" tumors, which exhibit minimal immune activity, into "hot" tumors to enhance their responsiveness to ICIs is a critical and complex area of current research. Central to this endeavor is the activation of the cGAS-STING pathway, a pivotal nexus between innate and adaptive immunity. This pathway's activation promotes the production of type I interferon (IFN) and the recruitment of CD8+ T cells, thereby transforming the tumor microenvironment (TME) from "cold" to "hot". This review comprehensively explores the cGAS-STING pathway's role in reconditioning the TME, detailing the underlying mechanisms of innate and adaptive immunity and highlighting the contributions of various immune cells to tumor immunity. Furthermore, we delve into the latest clinical research on STING agonists and their potential in combination therapies, targeting this pathway. The discussion concludes with an examination of the challenges facing the advancement of promising STING agonists in clinical trials and the pressing issues within the cGAS-STING signaling pathway research.
Collapse
Affiliation(s)
- Mingqing Huang
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Zhuocen Cha
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
- Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guizhou, China
| | - Rui Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Mengping Lin
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Naif Abdul Gafoor
- International Education School of Kunming Medical University, Kunming, China
| | - Tong Kong
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Fei Ge
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| |
Collapse
|
4
|
An Z, Liu W, Li W, Wei M, An C. Application of single-cell RNA sequencing in head and neck squamous cell carcinoma. Chin J Cancer Res 2023; 35:331-342. [PMID: 37691894 PMCID: PMC10485914 DOI: 10.21147/j.issn.1000-9604.2023.04.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Single-cell RNA sequencing has been broadly applied to head and neck squamous cell carcinoma (HNSCC) for characterizing the heterogeneity and genomic mutations of HNSCC benefiting from the advantage of single-cell resolution. We summarized most of the current studies and aimed to explore their research methods and ideas, as well as how to transform them into clinical applications. Through single-cell RNA sequencing, we found the differences in tumor cells' expression programs and differentiation tracks. The studies of immune microenvironment allowed us to distinguish immune cell subpopulations, the extensive expression of immune checkpoints, and the complex crosstalk network between immune cells and non-immune cells. For cancer-associated fibroblasts (CAFs), single-cell RNA sequencing had made an irreplaceable contribution to the exploration of their differentiation status, specific CAFs markers, and the interaction with tumor cells and immune cells. In addition, we demonstrated in detail how single-cell RNA sequencing explored the HNSCC epithelial-to-mesenchymal transition (EMT) model and the mechanism of drug resistance, as well as its clinical value.
Collapse
Affiliation(s)
- Zhaohong An
- Department of Head & Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wan Liu
- Department of Head & Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen Center, Shenzhen 518000, China
| | - Wenbin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Minghui Wei
- Department of Head & Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen Center, Shenzhen 518000, China
| | - Changming An
- Department of Head & Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
5
|
Chi H, Peng G, Wang R, Yang F, Xie X, Zhang J, Xu K, Gu T, Yang X, Tian G. Cuprotosis Programmed-Cell-Death-Related lncRNA Signature Predicts Prognosis and Immune Landscape in PAAD Patients. Cells 2022; 11:3436. [PMID: 36359832 PMCID: PMC9658590 DOI: 10.3390/cells11213436] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022] Open
Abstract
In terms of mortality and survival, pancreatic cancer is one of the worst malignancies. Known as a unique type of programmed cell death, cuprotosis contributes to tumor cell growth, angiogenesis, and metastasis. Cuprotosis programmed-cell-death-related lncRNAs (CRLs) have been linked to PAAD, although their functions in the tumor microenvironment and prognosis are not well understood. This study included data from the TCGA-PAAD cohort. Random sampling of PAAD data was conducted, splitting the data into two groups for use as a training set and test set (7:3). We searched for differentially expressed genes that were substantially linked to prognosis using univariate Cox and Lasso regression analysis. Through the use of multivariate Cox proportional risk regression, a risk-rating system for prognosis was developed. Correlations between the CRL signature and clinicopathological characteristics, tumor microenvironment, immunotherapy response, and chemotherapy sensitivity were further evaluated. Lastly, qRT-PCR was used to compare CRL expression in healthy tissues to that in tumors. Some CRLs are thought to have strong correlations with PAAD outcomes. These CRLs include AC005332.6, LINC02041, LINC00857, and AL117382.1. The CRL-based signature construction exhibited outstanding predictive performance and offers a fresh approach to evaluating pre-immune effectiveness, paving the way for future studies in precision immuno-oncology.
Collapse
Affiliation(s)
- Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Rui Wang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Fengyi Yang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Ke Xu
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Tao Gu
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
6
|
Blocker SJ, Cook J, Everitt JI, Austin WM, Watts TL, Mowery YM. Automated Nuclear Segmentation in Head and Neck Squamous Cell Carcinoma Pathology Reveals Relationships between Cytometric Features and ESTIMATE Stromal and Immune Scores. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1305-1320. [PMID: 35718057 PMCID: PMC9484476 DOI: 10.1016/j.ajpath.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 04/09/2023]
Abstract
The tumor microenvironment (TME) plays an important role in the progression of head and neck squamous cell carcinoma (HNSCC). Currently, pathologic assessment of TME is nonstandardized and subject to observer bias. Genome-wide transcriptomic approaches to understanding the TME, while less subject to bias, are expensive and not currently a part of the standard of care for HNSCC. To identify pathology-based biomarkers that correlate with genomic and transcriptomic signatures of TME in HNSCC, cytometric feature maps were generated in a publicly available data set from a cohort of patients with HNSCC, including whole-slide tissue images and genomic and transcriptomic phenotyping (N = 49). Cytometric feature maps were generated based on whole-slide nuclear detection, using a deep-learning algorithm trained for StarDist nuclear segmentation. Cytometric features in each patient were compared to transcriptomic measurements, including Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression Data (ESTIMATE) scores and stemness scores. With correction for multiple comparisons, one feature (nuclear circularity) demonstrated a significant linear correlation with ESTIMATE stromal score. Two features (nuclear maximum and minimum diameter) correlated significantly with ESTIMATE immune score. Three features (nuclear solidity, nuclear minimum diameter, and nuclear circularity) correlated significantly with transcriptomic stemness score. This study provides preliminary evidence that observer-independent, automated tissue-slide analysis can provide insights into the HNSCC TME which correlate with genomic and transcriptomic assessments.
Collapse
Affiliation(s)
- Stephanie J Blocker
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina.
| | - James Cook
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina
| | | | - Wyatt M Austin
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, North Carolina
| | - Tammara L Watts
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, North Carolina
| | - Yvonne M Mowery
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, North Carolina; Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|