1
|
Liu S, Jin P. Advances and Challenges in 3D Bioprinted Cancer Models: Opportunities for Personalized Medicine and Tissue Engineering. Polymers (Basel) 2025; 17:948. [PMID: 40219336 PMCID: PMC11991528 DOI: 10.3390/polym17070948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Cancer is the second leading cause of death worldwide, after cardiovascular disease, claiming not only a staggering number of lives but also causing considerable health and economic devastation, particularly in less-developed countries. Therapeutic interventions are impeded by differences in patient-to-patient responses to anti-cancer drugs. A personalized medicine approach is crucial for treating specific patient groups and includes using molecular and genetic screens to find appropriate stratifications of patients who will respond (and those who will not) to treatment regimens. However, information on which risk stratification method can be used to hone in on cancer types and patients who will be likely responders to a specific anti-cancer agent remains elusive for most cancers. Novel developments in 3D bioprinting technology have been widely applied to recreate relevant bioengineered tumor organotypic structures capable of mimicking the human tissue and microenvironment or adequate drug responses in high-throughput screening settings. Parts are autogenously printed in the form of 3D bioengineered tissues using a computer-aided design concept where multiple layers include different cell types and compatible biomaterials to build specific configurations. Patient-derived cancer and stromal cells, together with genetic material, extracellular matrix proteins, and growth factors, are used to create bioprinted cancer models that provide a possible platform for the screening of new personalized therapies in advance. Both natural and synthetic biopolymers have been used to encourage the growth of cells and biological materials in personalized tumor models/implants. These models may facilitate physiologically relevant cell-cell and cell-matrix interactions with 3D heterogeneity resembling real tumors.
Collapse
Affiliation(s)
- Sai Liu
- Health Science Center, Yangtze University, Jingzhou 434023, China;
| | | |
Collapse
|
2
|
Godier C, Baka Z, Lamy L, Gribova V, Marchal P, Lavalle P, Gaffet E, Bezdetnaya L, Alem H. A 3D Bio-Printed-Based Model for Pancreatic Ductal Adenocarcinoma. Diseases 2024; 12:206. [PMID: 39329875 PMCID: PMC11431387 DOI: 10.3390/diseases12090206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a disease with a very poor prognosis, characterized by incidence rates very close to death rates. Despite the efforts of the scientific community, preclinical models that faithfully recreate the PDAC tumor microenvironment remain limited. Currently, the use of 3D bio-printing is an emerging and promising method for the development of cancer tumor models with reproducible heterogeneity and a precisely controlled structure. This study presents the development of a model using the extrusion 3D bio-printing technique. Initially, a model combining pancreatic cancer cells (Panc-1) and cancer-associated fibroblasts (CAFs) encapsulated in a sodium alginate and gelatin-based hydrogel to mimic the metastatic stage of PDAC was developed and comprehensively characterized. Subsequently, efforts were made to vascularize this model. This study demonstrates that the resulting tumors can maintain viability and proliferate, with cells self-organizing into aggregates with a heterogeneous composition. The utilization of 3D bio-printing in creating this tumor model opens avenues for reproducing tumor complexity in the future, offering a versatile platform for improving anti-cancer therapy models.
Collapse
Affiliation(s)
- Claire Godier
- IJL, CNRS, Université de Lorraine, 54000 Nancy, France; (C.G.); (Z.B.); (E.G.)
| | - Zakaria Baka
- IJL, CNRS, Université de Lorraine, 54000 Nancy, France; (C.G.); (Z.B.); (E.G.)
| | - Laureline Lamy
- CRAN, CNRS, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France; (L.L.); (L.B.)
- Département Recherche, Institut de Cancérologie de Lorraine (ICL), 6 Avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1121, Biomaterials and Bioengineering, 1 rue Eugène Boeckel, 67100 Strasbourg, France; (V.G.); (P.L.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | | | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1121, Biomaterials and Bioengineering, 1 rue Eugène Boeckel, 67100 Strasbourg, France; (V.G.); (P.L.)
- Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Eric Gaffet
- IJL, CNRS, Université de Lorraine, 54000 Nancy, France; (C.G.); (Z.B.); (E.G.)
| | - Lina Bezdetnaya
- CRAN, CNRS, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France; (L.L.); (L.B.)
- Département Recherche, Institut de Cancérologie de Lorraine (ICL), 6 Avenue de Bourgogne, 54519 Vandœuvre-lès-Nancy, France
| | - Halima Alem
- IJL, CNRS, Université de Lorraine, 54000 Nancy, France; (C.G.); (Z.B.); (E.G.)
- Institut Universitaire de France, 75000 Paris, France
| |
Collapse
|
3
|
Hockney S, Parker J, Turner JE, Todd X, Todryk S, Gieling RG, Hilgen G, Simoes DCM, Pal D. Next generation organoid engineering to replace animals in cancer drug testing. Biochem Pharmacol 2023; 213:115586. [PMID: 37164297 DOI: 10.1016/j.bcp.2023.115586] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Cancer therapies have several clinical challenges associated with them, namely treatment toxicity, treatment resistance and relapse. Due to factors ranging from patient profiles to the tumour microenvironment (TME), there are several hurdles to overcome in developing effective treatments that have low toxicity that can mitigate emergence of resistance and occurrence of relapse. De novo cancer development has the highest drug attrition rates with only 1 in 10,000 preclinical candidates reaching the market. To alleviate this high attrition rate, more mimetic and sustainable preclinical models that can capture the disease biology as in the patient, are required. Organoids and next generation 3D tissue engineering is an emerging area that aims to address this problem. Advancement of three-dimensional (3D) in vitro cultures into complex organoid models incorporating multiple cell types alongside acellular aspects of tissue microenvironments can provide a system for therapeutic testing. Development of microfluidic technologies have furthermore increased the biomimetic nature of these models. Additionally, 3D bio-printing facilitates generation of tractable ex vivo models in a controlled, scalable and reproducible manner. In this review we highlight some of the traditional preclinical models used in cancer drug testing and debate how next generation organoids are being used to replace not only animal models, but also some of the more elementary in vitro approaches, such as cell lines. Examples of applications of the various models will be appraised alongside the future challenges that still need to be overcome.
Collapse
Affiliation(s)
- Sean Hockney
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jessica Parker
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jasmin E Turner
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 4EP, UK
| | - Xanthea Todd
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Stephen Todryk
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Roben Ger Gieling
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gerrit Hilgen
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 4EP, UK
| | - Davina Camargo Madeira Simoes
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Deepali Pal
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
4
|
Guzzeloni V, Veschini L, Pedica F, Ferrero E, Ferrarini M. 3D Models as a Tool to Assess the Anti-Tumor Efficacy of Therapeutic Antibodies: Advantages and Limitations. Antibodies (Basel) 2022; 11:antib11030046. [PMID: 35892706 PMCID: PMC9326665 DOI: 10.3390/antib11030046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are an emerging and very active frontier in clinical oncology, with hundred molecules currently in use or being tested. These treatments have already revolutionized clinical outcomes in both solid and hematological malignancies. However, identifying patients who are most likely to benefit from mAbs treatment is currently challenging and limiting the impact of such therapies. To overcome this issue, and to fulfill the expectations of mAbs therapies, it is urgently required to develop proper culture models capable of faithfully reproducing the interactions between tumor and its surrounding native microenvironment (TME). Three-dimensional (3D) models which allow the assessment of the impact of drugs on tumors within its TME in a patient-specific context are promising avenues to progressively fill the gap between conventional 2D cultures and animal models, substantially contributing to the achievement of personalized medicine. This review aims to give a brief overview of the currently available 3D models, together with their specific exploitation for therapeutic mAbs testing, underlying advantages and current limitations to a broader use in preclinical oncology.
Collapse
Affiliation(s)
- Virginia Guzzeloni
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (V.G.); (E.F.)
| | - Lorenzo Veschini
- Academic Centre of Reconstructive Science, Faculty of Dentistry Oral & Craniofacial Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Federica Pedica
- Pathology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Elisabetta Ferrero
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (V.G.); (E.F.)
| | - Marina Ferrarini
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (V.G.); (E.F.)
- Correspondence:
| |
Collapse
|