1
|
Hao J, Jie Y, Lu Z, Ye T, Meng J, Liu C, Yan J, Zheng Y, Dong Z, Gu Z. Temporal changes in the transcriptome profile of Macrobrachium rosenbergii in response to decapod iridescent virus 1 infection. Front Immunol 2025; 16:1575476. [PMID: 40276510 PMCID: PMC12018387 DOI: 10.3389/fimmu.2025.1575476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
The farming of Macrobrachium rosenbergii faces significant challenges due to infections caused by Decapod iridovirus 1 (DIV1). To gain deeper insights into the dynamic immune regulatory processes of M. rosenbergii in response to DIV1 infection, RNA sequencing (RNA-seq) was employed to profile the transcriptome in the hepatopancreas at 24, 48, 72, and 96 hours post-infection (hpi). Time-course analysis revealed 3,339 differentially expressed genes (DEGs), which exhibited distinct expression patterns across various stages of infection. At 24 hpi and 48 hpi, the top 20 enriched pathways included 3 immunity-related pathways (Lysosome, Phagosome, C-type lectin receptor signaling) and 7 metabolism-related pathways at 24 hpi, and 5 metabolism-related pathways at 48 hpi. In contrast, in the later stages of infection (72 hpi), 13 of the top 17 enriched pathways associated with DEGs were metabolism-related, including those involved in antioxidant defense, such as the Peroxisome, Cysteine and methionine metabolism, and Glutathione metabolism. At 96 hpi, pathways related to ECM-receptor interaction, Purine metabolism, and Lysosome were significantly enriched. Among the DEGs, a total of 16 genes were consistently identified across all time points, with 14 of these genes, including alpha-2-macroglobulin-like, alpha-amylase 1-like, putative aldolase class 2 protein PA3430, platelet-derived growth factor subunit B-like, serum amyloid A-5 protein-like, phenoloxidase-activating enzyme-like, pantetheinase-like, and perlucin-like protein, demonstrating sustained upregulation at all time points. In contrast, the gene encoding rhodanese domain-containing protein CG4456-like was consistantly downregulated. Additionally, weighted gene co-expression network analysis (WGCNA) indicated several hub genes that were tightly connected to intercellular communication, such as innexin shaking-B-like and innexin inx3-like, and endochitinase A1-like. The gene expression changes varied over time, exhibiting a dynamic, time-dependent pattern that underscores the complexity of host-pathogen interactions. These results provide new insights into the cellular mechanisms influenced by DIV1 throughout the infection process, offering valuable knowledge for developing virus control strategies in shrimp aquaculture.
Collapse
Affiliation(s)
- Jingwen Hao
- Xianghu Laboratory, Hangzhou, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Yukun Jie
- Xianghu Laboratory, Hangzhou, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Zhibin Lu
- Xianghu Laboratory, Hangzhou, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | | | | | - Cui Liu
- Xianghu Laboratory, Hangzhou, China
| | | | | | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | | |
Collapse
|
2
|
Li Y, Chen S, Rao H, Cui S, Chen G. MicroRNA Gets a Mighty Award. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414625. [PMID: 39836690 PMCID: PMC11831481 DOI: 10.1002/advs.202414625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Indexed: 01/23/2025]
Abstract
Recent advancements in microRNAs (miRNAs) research have revealed their key roles in both normal physiological processes and pathological conditions, leading to potential applications in diagnostics and therapeutics. However, the path forward is fraught with several scientific and technical challenges. This review article briefly explores the milestones of the discovery, biogenesis, functions, and application for clinical diagnostic and therapeutic strategies of miRNAs. The potential challenges and future directions are also discussed to fully harness their capabilities.
Collapse
Affiliation(s)
- Yu Li
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Sijie Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Hai Rao
- Department of BiochemistryKey University Laboratory of Metabolism and Health of GuangdongSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Shengjin Cui
- Clinical LaboratoryThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdong518053China
| | - Guoan Chen
- Department of Human Cell Biology and GeneticsJoint Laboratory of Guangdong‐Hong Kong Universities for Vascular Homeostasis and DiseasesSchool of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055China
| |
Collapse
|
3
|
Zhao H, Huang Y, Yang W, Huang C, Ou Z, He J, Yang M, Wu J, Yao H, Yang Y, Yi J, Kong L. Viola yedoensis Makino alleviates lipopolysaccharide-induced intestinal oxidative stress and inflammatory response by regulating the gut microbiota and NF-κB-NLRP3/ Nrf2-MAPK signaling pathway in broiler. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116692. [PMID: 38971097 DOI: 10.1016/j.ecoenv.2024.116692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Viola yedoensis Makino (Vy) is a well-known traditional Chinese medicine widely used to treat inflammatory diseases. However, the regulatory effects of dietary Vy supplementation on lipopolysaccharide (LPS)-induced intestinal damage in broilers and the underlying molecular mechanisms remain unclear. In this study, broilers were intraperitoneally injected with 1 mg/kg LPS on days 17, 19 and 21 to induce intestinal damage. Vy supplementation at 0.5, 1.5 and 4.5 % in the diet was administered separately for 21 days to investigate the potential protective effects of Vy supplementation against LPS-induced intestinal impairment in broilers. Vy supplementation improved intestinal morphology and restored growth performance. Vy supplementation attenuated intestinal inflammation by regulating the nuclear factor kappa B (NF-κB) / NLR family pyrin domain-containing 3 (NLRP3) signaling pathway and inhibited its downstream pro-inflammatory factor levels. In addition, Vy supplementation relieved intestinal oxidative impairment by regulating the nuclear factor erythroid-2 related factor 2 (Nrf2) / mitogen-activated protein kinase (MAPK) signaling pathway and downstream antioxidant enzyme activity. Vy supplementation reduced LPS-induced mitochondrial damage and apoptosis. Furthermore, Vy supplementation alleviated LPS-induced intestinal inflammation and oxidative damage in chickens by increasing the abundance of protective bacteria (Lactobacillus and Romboutsia) and reducing the number of pathogenic bacteria (unclassified_f_Ruminococcaceae, unclassified_f_Oscillospiraceae and norank_f_norank_o_Clostridia_vadinBB60_group). Overall, Vy supplementation effectively ameliorated LPS-induced intestinal damage by regulating the NF-κB-NLRP3/Nrf2-MAPK signaling pathway and maintaining intestinal microbiota balance. Vy supplementation can be used as a dietary supplement to protect broilers against intestinal inflammation and oxidative damage.
Collapse
Affiliation(s)
- Haoqiang Zhao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - You Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wenjiang Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Chunlin Huang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Zhaoping Ou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jiayu He
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Mingqi Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jiao Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Huan Yao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yu Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| | - Li Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Wongdontri C, Luangtrakul W, Boonchuen P, Sarnow P, Somboonviwat K, Jaree P, Somboonwiwat K. Participation of shrimp pva-miR-166 in hemocyte homeostasis by modulating apoptosis-related gene PvProsaposin during white spot syndrome virus infection. J Virol 2024; 98:e0053024. [PMID: 39051786 PMCID: PMC11334483 DOI: 10.1128/jvi.00530-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Tiny controllers referred to as microRNAs (miRNAs) impede the expression of genes to modulate biological processes. In invertebrates, particularly in shrimp as a model organism, it has been demonstrated that miRNAs play a crucial role in modulating innate immune responses against viral infection. By analyzing small RNAs, we identified 60 differentially expressed miRNAs (DEMs) in Penaues vannamei hemocytes following infection with white spot syndrome virus (WSSV). We predicted the target genes of WSSV-responsive miRNAs, shedding light on their participation in diverse biological pathways. We are particularly intrigued by pva-miR-166, which is the most notably elevated miRNA among 60 DEMs. At 24 h post-infection (hpi), the negative correlation between the expression of pva-miR-166 and its target gene, PvProsaposin, was evident and their interaction was confirmed by a reduction in luciferase activity in vitro. Suppression of PvProsaposin in unchallenged shrimp led to decreased survival rates, reduced total hemocyte count (THC), and increased caspase 3/7 activity, suggesting its significant role in maintaining hemocyte homeostasis. In WSSV-infected shrimp, a lower number of hemocytes corresponded to a lower WSSV load, but higher shrimp mortality was observed when PvProsaposin was suppressed. Conformingly, the introduction of the pva-miR-166 mimic to WSSV-infected shrimp resulted in decreased levels of PvProsaposin transcripts, a significant loss of THC, and an increase in the hemocyte apoptosis. Taken together, we propose that pva-miR-166 modulates hemocyte homeostasis during WSSV infection by suppressing the PvProsaposin, an anti-apoptotic gene. PvProsaposin inhibition disrupts hemocyte homeostasis, rendering the shrimp's inability to withstand WSSV invasion.IMPORTANCEGene regulation by microRNAs (miRNAs) has been reported during viral infection. Furthermore, hemocytes serve a dual role, not only producing various immune-related molecules to combat viral infections but also acting as a viral replication site. Maintaining hemocyte homeostasis is pivotal for the shrimp's survival during infection. The upregulated miRNA pva-miR-166 could repress PvProsaposin expression in shrimp hemocytes infected with WSSV. The significance of PvProsaposin in maintaining hemocyte homeostasis via apoptosis led to reduced survival rate, decreased total hemocyte numbers, and elevated caspase 3/7 activity in PvProsaposin-silenced shrimp. Additionally, the inhibitory ability of pva-miR-166-mimic and dsRNA-PvProsaposin on the expression of PvProsaposin also lowered the THC, increases the hemocyte apoptosis, resulting in a lower WSSV copy number. Ultimately, the dysregulation of the anti-apoptotic gene PvProsaposin by pva-miR-166 during WSSV infection disrupts hemocyte homeostasis, leading to an immunocompromised state in shrimp, rendering them incapable of surviving WSSV invasion.
Collapse
Affiliation(s)
- Chantaka Wongdontri
- Department of Biochemistry, Center of Excellence for Molecular Biology and Genomics of Shrimp, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Waruntorn Luangtrakul
- Department of Biochemistry, Center of Excellence for Molecular Biology and Genomics of Shrimp, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Peter Sarnow
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Kulwadee Somboonviwat
- Department of Computer Engineering, Faculty of Engineering at Sriracha, Kasetsart University Sriracha Campus, Chonburi, Thailand
| | - Phattarunda Jaree
- Center of Applied Shrimp Research and Innovation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kunlaya Somboonwiwat
- Department of Biochemistry, Center of Excellence for Molecular Biology and Genomics of Shrimp, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Wang Y, Dai L, Liang Z, Hu N, Hou D, Zhou Y, Sun C. Elimination of Decapod iridovirus 1 (DIV1) infection at high water temperature: a new environmental control strategy. ADVANCED BIOTECHNOLOGY 2024; 2:12. [PMID: 39883330 PMCID: PMC11740838 DOI: 10.1007/s44307-024-00012-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/27/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2025]
Abstract
Decapod iridovirus 1 (DIV1) poses a major challenge to sustainable shrimp farming and poses a serious hazard to aquaculture industry. This study investigated the complex interaction between DIV1 infection and water temperature, focusing on the effect of high temperature on DIV1 infection due to Penaeus monodon. Using models of latent and acute infection, the study revealed the response of P. monodon to DIV1 under different conditions. In the experimental set-up, the effect of high water temperature (34 ± 1 °C) compared with room temperature (26 ± 1 °C) was investigated. DIV1 replication was significantly inhibited in the high-temperature group (H), resulting in complete viral elimination within 15 days. DIV1 did not resurface even after return to room temperature (26 ± 1 °C), indicating sustained antiviral effects. Compared with the room temperature (26 ± 1 °C) group (N), the H group showed a 100% reduction in the incidence of latent and acute infection. Exposure to high water temperature directly impaired the viability of DIV1, enhancing the immune system of P. monodon, and expediting metabolic processes for efficient DIV1 clearance. The study highlights the significant inhibitory effects of high water temperature (34 ± 1 °C) on DIV1 infection in P. monodon, resulting in viral eradication. This discovery offers a potential strategy for mitigating DIV1 infections in shrimp aquaculture, prompting further investigation into underlying mechanisms. Optimising parameters and protocols for high-temperature treatment is crucial for viral control. Exploring the broader implications of the findings on other viral infections in crustacean aquaculture could provide valuable insights for comprehensive disease prevention and control.
Collapse
Affiliation(s)
- Yue Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Linxin Dai
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zuluan Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Naijie Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yinhuan Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China.
- Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, Guangdong, China.
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China.
| |
Collapse
|
6
|
Zhong S, Ye X, Liu H, Ma X, Chen X, Zhao L, Huang G, Huang L, Zhao Y, Qiao Y. MicroRNA sequencing analysis reveals immune responses in hepatopancreas of Fenneropenaeus penicillatus under white spot syndrome virus infection. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109432. [PMID: 38331056 DOI: 10.1016/j.fsi.2024.109432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
White Spot Disease is one of the most harmful diseases of the red tail shrimp, which can cause devastating economic losses due to the highest mortality up to 100% within a few days. MicroRNAs (miRNAs) are large class of small noncoding RNAs with the ability to post-transcriptionally repress the translation of target mRNAs. MiRNAs are considered to have a significant role in the innate immune response of crustaceans, particularly in relation to antiviral defense mechanisms. Numerous crustacean miRNAs have been verified to be required in host immune defense against viral infection, however, till present, the miRNAs functions of F. penicillatus defense WSSV infection have not been studied yet. Here in this study, for the first time, miRNAs involved in the F. penicillatus immune defense against WSSV infection were identified using high-throughput sequencing platform. A total of 432 miRNAs were obtained including 402 conserved miRNAs and 30 novel predicted miRNAs. Comparative analysis between the WSSV-challenged group and the control group revealed differential expression of 159 microRNAs in response to WSSV infection. Among these, 48 were up-regulated and 111 were down-regulated. Ten candidate MicroRNAs associated with immune activities were randomly selected for qRT-PCR analysis, which confirming the expression profiling observed in the MicroRNA sequencing data. As a result, most differentially expressed miRNAs were down-regulated lead to increase the expression of various target genes that mediated immune reaction defense WSSV infection, including genes related to signal transduction, Complement and coagulation cascade, Phagocytosis, and Apoptosis. Furthermore, the genes expression of the key members in Toll and Imd signaling pathways and apoptotic signaling were mediated by microRNAs to activate host immune responses including apoptosis against WSSV infection. These results will help to understand molecular defense mechanism against WSSV infection in F. penicillatus and to develop an effective WSSV defensive strategy in shrimp farming.
Collapse
Affiliation(s)
- Shengping Zhong
- Guangxi Key Laboratory of Marine Drugs, Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China; Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 570100, China.
| | - Xiaowu Ye
- Beihai People's Hospital, Beihai, 536000, China
| | - Hongtao Liu
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 570100, China
| | - Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530200, China
| | - Longyan Zhao
- Guangxi Key Laboratory of Marine Drugs, Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Guoqiang Huang
- Guangxi Key Laboratory of Marine Drugs, Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Lianghua Huang
- Guangxi Key Laboratory of Marine Drugs, Institute of marine drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530200, China
| | - Ying Qiao
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China.
| |
Collapse
|
7
|
Balakittnen J, Ekanayake Weeramange C, Wallace DF, Duijf PHG, Cristino AS, Hartel G, Barrero RA, Taheri T, Kenny L, Vasani S, Batstone M, Breik O, Punyadeera C. A novel saliva-based miRNA profile to diagnose and predict oral cancer. Int J Oral Sci 2024; 16:14. [PMID: 38368395 PMCID: PMC10874410 DOI: 10.1038/s41368-023-00273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/13/2023] [Accepted: 12/25/2023] [Indexed: 02/19/2024] Open
Abstract
Oral cancer (OC) is the most common form of head and neck cancer. Despite the high incidence and unfavourable patient outcomes, currently, there are no biomarkers for the early detection of OC. This study aims to discover, develop, and validate a novel saliva-based microRNA signature for early diagnosis and prediction of OC risk in oral potentially malignant disorders (OPMD). The Cancer Genome Atlas (TCGA) miRNA sequencing data and small RNA sequencing data of saliva samples were used to discover differentially expressed miRNAs. Identified miRNAs were validated in saliva samples of OC (n = 50), OPMD (n = 52), and controls (n = 60) using quantitative real-time PCR. Eight differentially expressed miRNAs (miR-7-5p, miR-10b-5p, miR-182-5p, miR-215-5p, miR-431-5p, miR-486-3p, miR-3614-5p, and miR-4707-3p) were identified in the discovery phase and were validated. The efficiency of our eight-miRNA signature to discriminate OC and controls was: area under curve (AUC): 0.954, sensitivity: 86%, specificity: 90%, positive predictive value (PPV): 87.8% and negative predictive value (NPV): 88.5% whereas between OC and OPMD was: AUC: 0.911, sensitivity: 90%, specificity: 82.7%, PPV: 74.2% and NPV: 89.6%. We have developed a risk probability score to predict the presence or risk of OC in OPMD patients. We established a salivary miRNA signature that can aid in diagnosing and predicting OC, revolutionising the management of patients with OPMD. Together, our results shed new light on the management of OC by salivary miRNAs to the clinical utility of using miRNAs derived from saliva samples.
Collapse
Affiliation(s)
- Jaikrishna Balakittnen
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, University of Jaffna, Jaffna, Sri Lanka
| | - Chameera Ekanayake Weeramange
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
- Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia
| | - Daniel F Wallace
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Pascal H G Duijf
- Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia & SA Pathology, Adelaide, SA, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Alexandre S Cristino
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Gunter Hartel
- QIMR Berghofer Medical Research Institute, Statistics Unit, Brisbane, QLD, Australia
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia
- School of Nursing, Queensland University of Technology, Brisbane, QLD, Australia
| | - Roberto A Barrero
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD, Australia
| | - Touraj Taheri
- Department of Anatomical Pathology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Liz Kenny
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
- Royal Brisbane and Women's Hospital, Cancer Care Services, Herston, QLD, Australia
| | - Sarju Vasani
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
- Royal Brisbane and Women's Hospital, Cancer Care Services, Herston, QLD, Australia
- Department of Otolaryngology, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Martin Batstone
- Department of Oral and Maxillofacial Surgery, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Omar Breik
- Royal Brisbane and Women's Hospital, Cancer Care Services, Herston, QLD, Australia
- Department of Oral and Maxillofacial Surgery, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Chamindie Punyadeera
- Saliva & Liquid Biopsy Translational Laboratory, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.
- Menzies Health Institute, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
8
|
Zhang L, Wang F, Jia L, Yan H, Gao L, Tian Y, Su X, Zhang X, Lv C, Ma Z, Xue Y, Lin Q, Wang K. Edwardsiella piscicida infection reshapes the intestinal microbiome and metabolome of big-belly seahorses: mechanistic insights of synergistic actions of virulence factors. Front Immunol 2023; 14:1135588. [PMID: 37215132 PMCID: PMC10193291 DOI: 10.3389/fimmu.2023.1135588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Uncovering the mechanism underlying the pathogenesis of Edwardsiella piscicida-induced enteritis is essential for global aquaculture. In the present study, we identified E. piscicida as a lethal pathogen of the big-belly seahorse (Hippocampus abdominalis) and revealed its pathogenic pattern and characteristics by updating our established bacterial enteritis model and evaluation system. Conjoint analysis of metagenomic and metabolomic data showed that 15 core virulence factors could mutually coordinate the remodeling of intestinal microorganisms and host metabolism and induce enteritis in the big-belly seahorse. Specifically, the Flagella, Type IV pili, and Lap could significantly increase the activities of the representative functional pathways of both flagella assembly and bacterial chemotaxis in the intestinal microbiota (P < 0.01) to promote pathogen motility, adherence, and invasion. Legiobactin, IraAB, and Hpt could increase ABC transporter activity (P < 0.01) to compete for host nutrition and promote self-replication. Capsule1, HP-NAP, and FarAB could help the pathogen to avoid phagocytosis. Upon entering epithelial cells and phagocytes, Bsa T3SS and Dot/Icm could significantly increase bacterial secretion system activity (P < 0.01) to promote the intracellular survival and replication of the pathogen and the subsequent invasion of the neighboring tissues. Finally, LPS3 could significantly increase lipopolysaccharide biosynthesis (P < 0.01) to release toxins and kill the host. Throughout the pathogenic process, BopD, PhoP, and BfmRS significantly activated the two-component system (P < 0.01) to coordinate with other VFs to promote deep invasion. In addition, the levels of seven key metabolic biomarkers, Taurine, L-Proline, Uridine, L-Glutamate, Glutathione, Xanthosine, and L-Malic acid, significantly decreased (P < 0.01), and they can be used for characterizing E. piscicida infection. Overall, the present study systematically revealed how a combination of virulence factors mediate E. piscicida-induced enteritis in fish for the first time, providing a theoretical reference for preventing and controlling this disease in the aquaculture of seahorses and other fishes.
Collapse
Affiliation(s)
- Lele Zhang
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Fang Wang
- Department of Pathology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Longwu Jia
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Hansheng Yan
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Longkun Gao
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Yanan Tian
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Xiaolei Su
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Xu Zhang
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Chunhui Lv
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Zhenhao Ma
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Yuanyuan Xue
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Qiang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Kai Wang
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| |
Collapse
|
9
|
Zhang L, Zhang Z, Xu S, Zhang X, Liu X. Transcriptome-wide identification and characterization of the Macrobrachium rosenbergii microRNAs potentially related to immunity against non-O1 Vibrio cholerae infection. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108692. [PMID: 36924912 DOI: 10.1016/j.fsi.2023.108692] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Non-O1 Vibrio cholerae, a member of the Vibrio family, could cause gastrointestinal infection of Macrobrachium rosenbergii and result in significant economic losses. However, few studies on microRNA immunity related to non-O1 V. cholerae infection of M. rosenbergii. The aim of this study was to elucidate the mechanism of miRNA in the potential immune response of M. rosenbergii. to non-O1 V. cholerae MSVC-GY01 infection by transcriptome sequencing. Following quality screening, the control group received 10, 616, 712 clean reads, whereas the infected group received 9,727,616. The miRNA sequences in the two samples are extremely consistent and have a length of roughly 23 nt. In all, 871 known miRNAs were discovered, with 279 differentially expressed miRNAs (DEMs). Meanwhile, 62 novel miRNAs were predicted, including 43 DEMs. In order to understand the immune-related biological functions of DEMs, target genes were predicted. Pathway function annotation analysis showed that non-O1 V. cholerae affected the NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, and Toll-like receptor signaling pathway, suggesting that miRNAs in the hepatopancreas play a key role in immune responses to pattern recognition receptors. Twelve DEMs were randomly selected for Quantitative Real-time PCR (qRT-PCR). Overall, the expression trends of qRT-PCR were consistent with the sequencing results. These findings corroborate the immunomodulatory function of miRNA in M. rosenbergii against non-O1 V. cholerae infection and provide guidance for the prevention and treatment of related illnesses.
Collapse
Affiliation(s)
- Liwen Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zheling Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Sunan Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Xiaodan Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China.
| |
Collapse
|
10
|
Liao M, Liao X, Long X, Zhao J, He Z, Zhang J, Wu T, Sun C. Host-microbiota interactions and responses of Metapenaeus ensis infected with decapod iridescent virus 1. Front Microbiol 2023; 13:1097931. [PMID: 36713173 PMCID: PMC9880205 DOI: 10.3389/fmicb.2022.1097931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Decapod iridescent virus 1 (DIV1) has caused severe economic losses in shrimp aquaculture. So far, Researchs on DIV1-infected shrimp have mainly focused on the hemocytes immune response, while studies on the host-intestine microbiota interactions during DIV1 infection have been scarce. Methods This study determined the lethal concentration 50 (LC50) of DIV1 to Metapenaeus ensis, preliminarily determining that M. ensis could serve as a susceptible object for DIV1. The interactions and responses between the immune and intestine microbiota of shrimp under DIV1 infection were also investigated. Results and Discussion DIV1 infection decreases intestine bacterial diversity and alters the composition of intestine microbiota. Specifically, DIV1 infection decreases the abundance of potentially beneficial bacteria (Bacteroidetes, Firmicutes, and Actinobacteria), and significantly increases the abundance of pathogenic bacteria such as Vibrio and Photobacterium, thereby increasing the risk of secondary bacterial infections. The results of PICRUSt functional prediction showed that altered intestine microbiota induces host metabolism disorders, which could be attributed to the bioenergetic and biosynthetic requirements for DIV1 replication in shrimp. The comparative transcriptomic analysis showed that some metabolic pathways related to host immunity were significantly activated following DIV1 infection, including ncRNA processing and metabolic process, Ascorbate and aldarate metabolism, and Arachidonic acid metabolism. M. ensis may against DIV1 infection by enhancing the expression of some immune-related genes, such as Wnt16, heat shock protein 90 (Hsp90) and C-type lectin 3 (Ctl3). Notably, correlation analysis of intestinal microbial variation with host immunity showed that expansion of pathogenic bacteria (Vibrio and Photobacterium) in DIV1 infection could increased the expression of NF-κB inhibitors cactus-like and Toll interacting protein (Tollip), which may limit the TLR-mediated immune response and ultimately lead to further DIV1 infection. Significance and Impact of the Study This study enhances our understanding of the interactions between shrimp immunity and intestinal microbiota. The ultimate goal is to develop novel immune enhancers for shrimp and formulate a safe and effective DIV1 defense strategy.
Collapse
Affiliation(s)
- Minze Liao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xuzheng Liao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xinxin Long
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jichen Zhao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jingyue Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Tingfen Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China,Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, China,*Correspondence: Chengbo Sun, ✉
| |
Collapse
|
11
|
He Z, Zhong Y, Liao M, Dai L, Wang Y, Zhang S, Sun C. Integrated analysis of intestinal microbiota and metabolomic reveals that decapod iridescent virus 1 (DIV1) infection induces secondary bacterial infection and metabolic reprogramming in Marsupenaeus japonicus. Front Immunol 2022; 13:982717. [PMID: 36189245 PMCID: PMC9524744 DOI: 10.3389/fimmu.2022.982717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, with global warming and increasing marine pollution, some novel marine viruses have become widespread in the aquaculture industry, causing huge losses to the aquaculture industry. Decapod iridescent virus 1 (DIV1) is one of the newly discovered marine viruses that has been reported to be detected in a variety of farmed crustacean and wild populations. Several previous studies have found that DIV1 can induce Warburg effect-related gene expression. In this study, the effects of DIV1 infection on intestinal health of shrimp were further explored from the aspects of histological, enzymatic activities, microorganisms and metabolites using Marsupenaeus japonicus as the object of study. The results showed that obvious injury in the intestinal mucosa was observed after DIV1 infection, the oxidative and antioxidant capacity of the shrimp intestine was unbalanced, the activity of lysozyme was decreased, and the activities of digestive enzymes were disordered, and secondary bacterial infection was caused. Furthermore, the increased abundance of harmful bacteria, such as Photobacterium and Vibrio, may synergized with DIV1 to promote the Warburg effect and induce metabolic reprogramming, thereby providing material and energy for DIV1 replication. This study is the first to report the changes of intestinal microbiota and metabolites of M. japonicus under DIV1 infection, demonstrating that DIV1 can induce secondary bacterial infection and metabolic reprogramming. Several bacteria and metabolites highly associated with DIV1 infection were screened, which may be leveraged for diagnosis of pathogenic infections or incorporated as exogenous metabolites to enhance immune response.
Collapse
Affiliation(s)
- Zihao He
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yunqi Zhong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Minze Liao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Linxin Dai
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Yue Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- *Correspondence: Chengbo Sun, ; Shuang Zhang,
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
- *Correspondence: Chengbo Sun, ; Shuang Zhang,
| |
Collapse
|
12
|
Qiao X, Lu Y, Xu J, Deng N, Lai W, Wu Z, Lin H, Zhang Y, Lu D. Integrative analyses of mRNA and microRNA expression profiles reveal the innate immune mechanism for the resistance to Vibrio parahaemolyticus infection in Epinephelus coioides. Front Immunol 2022; 13:982973. [PMID: 36059501 PMCID: PMC9437975 DOI: 10.3389/fimmu.2022.982973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus, as one of the main pathogens of marine vibriosis, has brought huge losses to aquaculture. However, the interaction mechanism between V. parahaemolyticus and Epinephelus coioides remains unclear. Moreover, there is a lack of comprehensive multi-omics analysis of the immune response of grouper spleen to V. parahaemolyticus. Herein, E. coioides was artificially injected with V. parahaemolyticus, and it was found that the mortality was 16.7% in the early stage of infection, and accompanied by obvious histopathological lesions in the spleen. Furthermore, 1586 differentially expressed genes were screened by mRNA-seq. KEGG analysis showed that genes were significantly enriched in immune-related pathways, Acute-phase immune response, Apoptosis, Complement system and Cytokine-cytokine receptor interaction. As for miRNA-seq analysis, a total of 55 significantly different miRNAs were identified. Further functional annotation analysis indicated that the target genes of differentially expressed miRNAs were enriched in three important pathways (Phosphatidylinositol signaling system, Lysosome and Focal adhesions). Through mRNA-miRNA integrated analysis, 1427 significant miRNA–mRNA pairs were obtained and “p53 signaling pathway”, “Intestinal immune network for IgA production” were considered as two crucial pathways. Finally, miR-144-y, miR-497-x, novel-m0459-5p, miR-7133-y, miR-378-y, novel-m0440-5p and novel-m0084-3p may be as key miRNAs to regulate immune signaling pathways via the miRNA-mRNA interaction network. The above results suggest that the mRNA-miRNA integrated analysis not only sheds new light on the molecular mechanisms underlying the interaction between host and V. parahaemolyticus but also provides valuable and new insights into resistance to vibrio infection.
Collapse
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Yuyou Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Jiachang Xu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Niuniu Deng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Wenjie Lai
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Wu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Ocean, Haikou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| | - Danqi Lu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Yong Zhang, ; Danqi Lu,
| |
Collapse
|
13
|
Chen Q, Tong M, Sun N, Yang Y, Cheng Y, Yi L, Wang G, Cao Z, Zhao Q, Cheng S. Integrated Analysis of miRNA-mRNA Expression in Mink Lung Epithelial Cells Infected With Canine Distemper Virus. Front Vet Sci 2022; 9:897740. [PMID: 35711811 PMCID: PMC9194998 DOI: 10.3389/fvets.2022.897740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023] Open
Abstract
Canine distemper (CD) caused by canine distemper virus (CDV) is one of the major infectious diseases in minks, bringing serious economic losses to the mink breeding industry. By an integrated analysis of microRNA (miRNA)-messenger RNA (mRNA), the present study analyzed the changes in the mink transcriptome upon CDV infection in mink lung epithelial cells (Mv. l. Lu cells) for the first time. A total of 4,734 differentially expressed mRNAs (2,691 upregulated and 2,043 downregulated) with |log2(FoldChange) |>1 and P-adj<0.05 and 181 differentially expressed miRNAs (152 upregulated and 29 downregulated) with |log2(FoldChange) |>2 and P-adj<0.05 were identified. Gene Ontology (GO) enrichment indicated that differentially expressed genes (DEGs) were associated with various biological processes and molecular function, such as response to stimulus, cell communication, signaling, cytokine activity, transmembrane signaling receptor activity and signaling receptor activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the combination of miRNA and mRNA was done for immune and inflammatory responses, such as Janus kinase (JAK)-signal transducer and activator (STAT) signaling pathway and nuclear factor (NF)-kappa B signaling pathway. The enrichment analysis of target mRNA of differentially expressed miRNA revealed that mir-140-5p and mir-378-12 targeted corresponding genes to regulate NF-kappa B signaling pathway. JAK-STAT signaling pathway could be modulated by mir-425-2, mir-139-4, mir-140-6, mir-145-3, mir-140-5p and mir-204-2. This study compared the influence of miRNA-mRNA expression in Mv. l. Lu cells before and after CDV infection by integrated analysis of miRNA-mRNA and analyzed the complex network interaction between virus and host cells. The results can help understand the molecular mechanism of the natural immune response induced by CDV infection in host cells.
Collapse
Affiliation(s)
- Qiang Chen
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Landscape Architecture, Changchun University, Changchun, China
| | - Mingwei Tong
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Na Sun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin City, China
| | - Yong Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yuening Cheng
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Li Yi
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Gaili Wang
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, China
| | - Zhigang Cao
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Quan Zhao
- College of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- *Correspondence: Quan Zhao
| | - Shipeng Cheng
- Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Institute of Special Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, China
- Shipeng Cheng
| |
Collapse
|