1
|
Ribeiro Liberato H, Bezerra Maciel J, Wlisses Da Silva A, Eduarda Uchoa Bezerra M, San De Oliveira Brito L, Silva J, Kuerislene Amâncio Ferreira M, Machado Marinho M, Marinho GS, Deusdênia Loiola Pessoa O, Guedes MIF, Goberlânio De Barros Silva P, Ferreira de Castro Gomes A, Silva Alencar De Menezes JE, Silva Dos Santos H. Neuromodulation of Acid-Sensitive Ion Channels (ASICs) and Anti-Inflammatory Potential by Lichenxanthone in Adult Zebrafish (Danio rerio): Experimental and Docking Studies. Chem Biodivers 2024; 21:e202400063. [PMID: 38329295 DOI: 10.1002/cbdv.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/09/2024]
Abstract
The xanthone lichenxanthone did not show toxic effects (LC50>1.0 mg/mL). lichenxanthone prevented nociceptive behavior induced by acidic saline, and its analgesic effect was blocked by amiloride, highlighting the involvement of neuromodulation of acid-sensitive ion channels (ASICs). In the analysis of anti-inflammatory activity, concentrations of 0.1 and 0.5 mg/mL of lichenxanthone reduced the edema induced by k-carrageenan 3.5 %, observed from the fourth hour of analysis. This effect was similar to that observed with ibuprofen (positive control). No leukocyte infiltrates were observed in lichenxanthone, suggesting that the compound acts in the acute inflammatory response. The results of the molecular docking study revealed that lichenxanthone exhibited better affinity energy when compared to the ibuprofen control against the two targets evaluated.
Collapse
Affiliation(s)
- Hortência Ribeiro Liberato
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Jéssica Bezerra Maciel
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Luana San De Oliveira Brito
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici s/n, Fortaleza, Ceará, Brazil
| | - Jacilene Silva
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Marcia Machado Marinho
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Gabrielle S Marinho
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Otília Deusdênia Loiola Pessoa
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Campus do Pici s/n, Fortaleza, Ceará, Brazil
| | - Maria Izabel F Guedes
- Centro de Ciências da Saúde, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | - Hélcio Silva Dos Santos
- Programa de Pós-graduação em Ciências Naturais, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
- Universidade Estadual do Vale do Acaraú, Centro de Ciências Exatas e Tecnologia, Sobral, Ceará, Brasil
| |
Collapse
|
2
|
Purushothaman K, Crawford AD, Rocha SD, Göksu AB, Lange BM, Mydland LT, Vij S, Qingsong L, Øverland M, Press CM. Cyberlindnera jadinii yeast as a functional protein source: Modulation of immunoregulatory pathways in the intestinal proteome of zebrafish ( Danio rerio). Heliyon 2024; 10:e26547. [PMID: 38468924 PMCID: PMC10925985 DOI: 10.1016/j.heliyon.2024.e26547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Yeasts contain bioactive components that can enhance fish immune robustness and disease resistance. Our study focused on analyzing intestinal immunoregulatory pathways in zebrafish (Danio rerio) using iTRAQ and 2D LC-MS/MS to quantify intestinal proteins. Zebrafish were fed either control diet (C) or diet supplemented with autolyzed Cyberlindnera jadinii (ACJ). KEGG analysis revealed that ACJ yeast diet induced increased abundance of proteins related to arginine and proline metabolism, phagosome, C-lectin receptor signaling, ribosome and PPAR signaling pathways, which can modulate and enhance innate immune responses. ACJ yeast diet also showed decreased abundance of proteins associated with inflammatory pathways, including apoptosis, necroptosis and ferroptosis. These findings indicate boosted innate immune response and control of inflammation-related pathways in zebrafish intestine. Our findings in the well annotated proteome of zebrafish enabled a detailed investigation of intestinal responses and provide insight into health-beneficial effects of yeast species C. jadinii, which is relevant for aquaculture species.
Collapse
Affiliation(s)
- Kathiresan Purushothaman
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Alexander D. Crawford
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Sérgio D.C. Rocha
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Aleksandar B. Göksu
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Byron Morales Lange
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Liv Torunn Mydland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Shubha Vij
- School of Applied Science, Republic Polytechnic, 9 Woodlands Avenue 9, Singapore 738964, Singapore
- Tropical Futures Institute, James Cook University Singapore, 149 Sims Drive, 387380, Singapore
| | - Lin Qingsong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Margareth Øverland
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, Ås, Norway
| | - Charles McL. Press
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
3
|
Fernandes DC, Tambourgi DV. Complement System Inhibitory Drugs in a Zebrafish ( Danio rerio) Model: Computational Modeling. Int J Mol Sci 2023; 24:13895. [PMID: 37762197 PMCID: PMC10530807 DOI: 10.3390/ijms241813895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The dysregulation of complement system activation usually results in acute or chronic inflammation and can contribute to the development of various diseases. Although the activation of complement pathways is essential for innate defense, exacerbated activity of this system may be harmful to the host. Thus, drugs with the potential to inhibit the activation of the complement system may be important tools in therapy for diseases associated with complement system activation. The synthetic peptides Cp40 and PMX205 can be highlighted in this regard, given that they selectively inhibit the C3 and block the C5a receptor (C5aR1), respectively. The zebrafish (Danio rerio) is a robust model for studying the complement system. The aim of the present study was to use in silico computational modeling to investigate the hypothesis that these complement system inhibitor peptides interact with their target molecules in zebrafish, for subsequent in vivo validation. For this, we analyzed molecular docking interactions between peptides and target molecules. Our study demonstrated that Cp40 and the cyclic peptide PMX205 have positive interactions with their respective zebrafish targets, thus suggesting that zebrafish can be used as an animal model for therapeutic studies on these inhibitors.
Collapse
Affiliation(s)
| | - Denise V. Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil;
| |
Collapse
|