1
|
Munir A, Khan S, Saleem A, Nusrat H, Khan SA, Sayyed H, Khalid A, Javed B, Hidayat F. The Role of Epstein-Barr Virus Molecular Mimicry in Various Autoimmune Diseases. Scand J Immunol 2025; 101:e70016. [PMID: 40155782 DOI: 10.1111/sji.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 04/01/2025]
Abstract
Rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and multiple sclerosis (MS) are complex autoimmune inflammatory diseases influenced by genetic, environmental and infectious agents like Epstein-Barr virus (EBV). EBV has been proposed to impact immune pathways through molecular mimicry, diverting antibody reactivity towards host tissues. This review explores the literature on EBV-specific similarities with human peptides and cytokines that might contribute to the onset of RA, SLE and MS. In conclusion, it is vital to conduct experimental computational analyses focusing on the homology between EBV and human proteins to unravel the complexities of autoimmune diseases and advance therapeutic approaches. These insights highlight the significance of collaborative efforts and diverse clinical studies for validation, linking the gap between research and practical applications in the complex field of autoimmunity.
Collapse
Affiliation(s)
- Ayesha Munir
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Sanaullah Khan
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Aisha Saleem
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Hira Nusrat
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Salman Ali Khan
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Humaira Sayyed
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ayesha Khalid
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Bushra Javed
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| | - Fatima Hidayat
- Institute of Zoological Sciences, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
2
|
Ojo TO, Elegbeleye OE, Bolaji OQ, Adelusi TI, Oladipo EK, Olawuyi MO, Afolayan BO, Oyaronbi AO, Ogunjobi TT, Oyewole MP, Folorunso KP, Ogunlana AT. Hitting Epstein Barr virus where it hurts: computational methods exploration for siRNA therapy in alleviating Epstein Barr virus-induced multiple sclerosis. Neurogenetics 2024; 25:263-275. [PMID: 38809364 DOI: 10.1007/s10048-024-00764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Multiple sclerosis (MS), an intricate neurological disorder, continues to challenge our understanding of the pivotal interplay between the immune system and the central nervous system (CNS). This condition arises from the immune system's misdirected attack on nerve fiber protection, known as myelin sheath, alongside nerve fibers themselves. This enigmatic condition, characterized by demyelination and varied clinical manifestations, prompts exploration into its multifaceted etiology and potential therapeutic avenues. Research has revealed a potential connection between Epstein Barr virus (EBV), specifically Epstein Barr Nuclear Antigen 1 (EBNA-1), and MS. The immune response to EBNA-1 antigen triggers the production of anti-EBNA-1 molecules, including IgG that identify a similar amino acid sequence to EBNA-1 in myelin, inadvertently targeting myelin sheath and contributing to MS progression. Currently, no treatment exists for EBNA-1-induced MS apart from symptom management. Addressing this, a novel potential therapeutic avenue utilizing small interference RNAs (siRNA) has been designed. By targeting the conserved EBNA-1 gene sequences in EBV types 1 and 2, five potential siRNAs were identified in our analysis. Thorough evaluations encompassing off-target binding, thermodynamics and secondary structure elucidation, efficacy prediction, siRNA-mRNA sequence binding affinity exploration, melting temperature, and docking of siRNAs with human argonaute protein 2 (AGO2) were conducted to elucidate the siRNAs efficiency. These designed siRNA molecules harnessed promising silencing activity in the EBNA-1 gene encoding the EBNA-1 antigen protein and thus have the potential to mitigate the severity of this dangerous virus.
Collapse
Affiliation(s)
- Taiwo Ooreoluwa Ojo
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, Oyo State, 210214, Nigeria
| | - Oluwabamise Emmanuel Elegbeleye
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olawale Quadri Bolaji
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Temitope Isaac Adelusi
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Surgery, School of Medicine, University of Connecticut Health, Farmington Ave, Connecticut, 06030, United States of America
| | - Elijah Kolawole Oladipo
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, Oyo State, 210214, Nigeria
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Bioinformatics, Adeleke University, Ede, Osun State, 232104, Nigeria
| | - Matthew Oluwaseun Olawuyi
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Bukola Oluwafunmilayo Afolayan
- Computational Molecular Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | - Taiwo Temitope Ogunjobi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | - Kolade Pelumi Folorunso
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Abdeen Tunde Ogunlana
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo State, 200005, Nigeria.
| |
Collapse
|
3
|
Naughton P, Enright F, Lucey B. Infectious mononucleosis: new concepts in clinical presentation, epidemiology, and host response. Curr Opin Infect Dis 2024; 37:157-163. [PMID: 38529804 DOI: 10.1097/qco.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE OF REVIEW Infectious mononucleosis (IM) is an infectious disease that presents clinically in only a small percentage of individuals despite almost universal infection with the causative agent. Here, we review the latest concepts in the clinical presentation, epidemiology, and host response of this disease. RECENT FINDINGS Several recently published papers/reviews describe IM as a condition caused by one of several etiologic agents including, cytomegalovirus (HHV-5), Roseola virus (HHV-6) and Toxoplasmosis amongst others; this review focuses on IM as solely caused by the human herpes virus 4 (HHV-4). Since the initial discovery of the virus in the 1960s and its subsequent discovery as the primary etiologic agent for IM it has been associated with several human cancers and autoimmune disorders. Recent published findings show a correlation between HHV-4 and the autoimmune disorder, multiple sclerosis (MS), suggesting earlier IM could possibly act as a causative factor. Considering the important links being made with IM to so many cancers and autoimmune disorders it is surprising that a standard investigative procedure has yet to be determined for this disease. A standard approach to the investigation of IM would ensure more cases are diagnosed, particularly atypical cases, this would benefit epidemiological studies, and more immediately help practitioners distinguish viral from bacterial throat infections, enabling them to treat accordingly. SUMMARY The understanding of the latest concepts in clinical presentation, epidemiology and host response to IM would benefit greatly from the introduction of a standard procedure for its investigation and diagnosis.
Collapse
Affiliation(s)
- Patrick Naughton
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown
- Department of Haematology
| | - Frances Enright
- Department of Paediatrics, Mercy University Hospital, Grenville Place, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown
| |
Collapse
|
4
|
Kell DB, Lip GYH, Pretorius E. Fibrinaloid Microclots and Atrial Fibrillation. Biomedicines 2024; 12:891. [PMID: 38672245 PMCID: PMC11048249 DOI: 10.3390/biomedicines12040891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Atrial fibrillation (AF) is a comorbidity of a variety of other chronic, inflammatory diseases for which fibrinaloid microclots are a known accompaniment (and in some cases, a cause, with a mechanistic basis). Clots are, of course, a well-known consequence of atrial fibrillation. We here ask the question whether the fibrinaloid microclots seen in plasma or serum may in fact also be a cause of (or contributor to) the development of AF. We consider known 'risk factors' for AF, and in particular, exogenous stimuli such as infection and air pollution by particulates, both of which are known to cause AF. The external accompaniments of both bacterial (lipopolysaccharide and lipoteichoic acids) and viral (SARS-CoV-2 spike protein) infections are known to stimulate fibrinaloid microclots when added in vitro, and fibrinaloid microclots, as with other amyloid proteins, can be cytotoxic, both by inducing hypoxia/reperfusion and by other means. Strokes and thromboembolisms are also common consequences of AF. Consequently, taking a systems approach, we review the considerable evidence in detail, which leads us to suggest that it is likely that microclots may well have an aetiological role in the development of AF. This has significant mechanistic and therapeutic implications.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool L7 8TX, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
5
|
Šimičić P, Batović M, Stojanović Marković A, Židovec-Lepej S. Deciphering the Role of Epstein-Barr Virus Latent Membrane Protein 1 in Immune Modulation: A Multifaced Signalling Perspective. Viruses 2024; 16:564. [PMID: 38675906 PMCID: PMC11054855 DOI: 10.3390/v16040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The disruption of antiviral sensors and the evasion of immune defences by various tactics are hallmarks of EBV infection. One of the EBV latent gene products, LMP1, was shown to induce the activation of signalling pathways, such as NF-κB, MAPK (JNK, ERK1/2, p38), JAK/STAT and PI3K/Akt, via three subdomains of its C-terminal domain, regulating the expression of several cytokines responsible for modulation of the immune response and therefore promoting viral persistence. The aim of this review is to summarise the current knowledge on the EBV-mediated induction of immunomodulatory molecules by the activation of signal transduction pathways with a particular focus on LMP1-mediated mechanisms. A more detailed understanding of the cytokine biology molecular landscape in EBV infections could contribute to the more complete understanding of diseases associated with this virus.
Collapse
Affiliation(s)
- Petra Šimičić
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, Vinogradska cesta 29, 10 000 Zagreb, Croatia;
| | - Margarita Batović
- Department of Clinical Microbiology and Hospital Infections, Dubrava University Hospital, Avenija Gojka Šuška 6, 10 000 Zagreb, Croatia;
| | - Anita Stojanović Marković
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Snjezana Židovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, Mirogojska 8, 10 000 Zagreb, Croatia
| |
Collapse
|
6
|
Grunwald C, Krętowska-Grunwald A, Adamska-Patruno E, Kochanowicz J, Kułakowska A, Chorąży M. The Role of Selected Interleukins in the Development and Progression of Multiple Sclerosis-A Systematic Review. Int J Mol Sci 2024; 25:2589. [PMID: 38473835 PMCID: PMC10932438 DOI: 10.3390/ijms25052589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Multiple sclerosis is a disabling inflammatory disorder of the central nervous system characterized by demyelination and neurodegeneration. Given that multiple sclerosis remains an incurable disease, the management of MS predominantly focuses on reducing relapses and decelerating the progression of both physical and cognitive decline. The continuous autoimmune process modulated by cytokines seems to be a vital contributing factor to the development and relapse of multiple sclerosis. This review sought to summarize the role of selected interleukins in the pathogenesis and advancement of MS. Patients with MS in the active disease phase seem to exhibit an increased serum level of IL-2, IL-4, IL-6, IL-13, IL-17, IL-21, IL-22 and IL-33 compared to healthy controls and patients in remission, while IL-10 appears to have a beneficial impact in preventing the progression of the disease. Despite being usually associated with proinflammatory activity, several studies have additionally recognized a neuroprotective role of IL-13, IL-22 and IL-33. Moreover, selected gene polymorphisms of IL-2R, IL-4, IL-6, IL-13 and IL-22 were identified as a possible risk factor related to MS development. Treatment strategies of multiple sclerosis that either target or utilize these cytokines seem rather promising, but more comprehensive research is necessary to gain a clearer understanding of how these cytokines precisely affect MS development and progression.
Collapse
Affiliation(s)
- Cezary Grunwald
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Anna Krętowska-Grunwald
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Jerzego Waszyngtona 17, 15-274 Białystok, Poland;
| | - Edyta Adamska-Patruno
- Clinical Research Center, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland;
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Monika Chorąży
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| |
Collapse
|
7
|
Hu F, Zhu Y, Tian J, Xu H, Xue Q. Single-Cell Sequencing Combined with Transcriptome Sequencing Constructs a Predictive Model of Key Genes in Multiple Sclerosis and Explores Molecular Mechanisms Related to Cellular Communication. J Inflamm Res 2024; 17:191-210. [PMID: 38226354 PMCID: PMC10788626 DOI: 10.2147/jir.s442684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
Background Multiple sclerosis (MS) causes chronic inflammation and demyelination of the central nervous system and comprises a class of neurodegenerative diseases in which interactions between multiple immune cell types mediate the involvement of MS development. However, the early diagnosis and treatment of MS remain challenging. Methods Gene expression profiles of MS patients were obtained from the Gene Expression Omnibus (GEO) database. Single-cell and intercellular communication analyses were performed to identify candidate gene sets. Predictive models were constructed using LASSO regression. Relationships between genes and immune cells were analyzed by single sample gene set enrichment analysis (ssGSEA). The molecular mechanisms of key genes were explored using gene enrichment analysis. An miRNA network was constructed to search for target miRNAs related to key genes, and related transcription factors were searched by transcriptional regulation analysis. We utilized the GeneCard database to detect the correlations between disease-regulated genes and key genes. We verified the mRNA expression of 4 key genes by reverse transcription-quantitative PCR (RT‒qPCR). Results Monocyte marker genes were selected as candidate gene sets. CD3D, IL2RG, MS4A6A, and NCF2 were found to be the key genes by LASSO regression. We constructed a prediction model with AUC values of 0.7569 and 0.719. The key genes were closely related to immune factors and immune cells. We explored the signaling pathways and molecular mechanisms involving the key genes by gene enrichment analysis. We obtained and visualized the miRNAs associated with the key genes using the miRcode database. We also predicted the transcription factors involved. We used validated key genes in MS patients, several of which were confirmed by RT‒qPCR. Conclusion The prediction model constructed with the CD3D, IL2RG, MS4A6A, and NCF2 genes has good diagnostic efficacy and provides new ideas for the diagnosis and treatment of MS.
Collapse
Affiliation(s)
- Fangzhou Hu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Yunfei Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Jingluan Tian
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| | - Hua Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
- Department of Neurology, Affiliated Jintan Hospital of Jiangsu University, Changzhou Jintan First People’s Hospital, Changzhou, Jiangsu, 215006, People’s Republic of China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, People’s Republic of China
| |
Collapse
|
8
|
Rizzo F, Houen G. Editorial: Immune evasion mechanisms and their role in the pathogenesis of autoimmune disorders. Front Immunol 2023; 14:1267922. [PMID: 37781356 PMCID: PMC10535089 DOI: 10.3389/fimmu.2023.1267922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Affiliation(s)
- Fabiana Rizzo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet, Research Park, Glostrup, Denmark
| |
Collapse
|
9
|
Delgado AL, Preston-Hurlburt P, Lim N, Sumida TS, Long SA, McNamara J, Serti E, Higdon L, Herold KC. Latent EBV impairs immune cell signaling and enhances the efficacy of anti-CD3 mAb in Type 1 Diabetes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.11.23292344. [PMID: 37502867 PMCID: PMC10370230 DOI: 10.1101/2023.07.11.23292344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Teplizumab has been approved for the delay of the onset of type 1 diabetes and may modulate new onset disease. We found that patients who were EBV positive at baseline had a more robust response to drug in two clinical trials and therefore postulated that latent virus has general effects in modifying immune responses. We compared the phenotypes, transcriptomes, and development of peripheral blood cells before and after teplizumab treatment. Higher number of Tregs and partially exhausted CD8 + T cells were found in EBV seropositive individuals at the baseline in the TN10 trial and AbATE trial. Single cell transcriptomics and functional assays identified downregulation of the T cell receptor and other signaling pathways before treatment. Impairments in function of adaptive immune cells were enhanced by teplizumab treatment in EBV seropositive individuals. Our data indicate that EBV can impair signaling pathways generally in immune cells, that broadly redirect cell differentiation.
Collapse
|