1
|
Long Z, Li X, Deng W, Tan Y, Liu J. Tumor-associated characteristics and immune dysregulation in nasopharyngeal carcinoma under the regulation of m7G-related tumor microenvironment cells. World J Surg Oncol 2024; 22:166. [PMID: 38918785 PMCID: PMC11202337 DOI: 10.1186/s12957-024-03441-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a type of malignant tumor with high morbidity. Aberrant levels of N7-methylguanosine (m7G) are closely associated with tumor progression. However, the characteristics of the tumor microenvironment (TME) in NPC associated with m7G modification remain unclear. METHODS A total of 68,795 single cells from single-cell RNA sequencing data derived from 11 NPC tumor samples and 3 nasopharyngeal lymphatic hyperplasia (NLH) samples were clustered using a nonnegative matrix factorization algorithm according to 61 m7G RNA modification regulators. RESULTS The m7G regulators were found differential expression in the TME cells of NPC, and most m7G-related immune cell clusters in NPC tissues had a higher abundance compared to non-NPC tissues. Specifically, m7G scores in the CD4+ and CD8+ T cell clusters were significantly lower in NPC than in NLH. T cell clusters differentially expressed immune co-stimulators and co-inhibitors. Macrophage clusters differentially expressed EIF4A1, and high EIF4A1 expression was associated with poor survival in patients with head and neck squamous carcinoma. EIF4A1 was upregulated in NPC tissues compared to the non-NPC tissues and mainly expressed in CD86+ macrophages. Moreover, B cell clusters exhibited tumor biological characteristics under the regulation of m7G-related genes in NPC. The fibroblast clusters interacted with the above immune cell clusters and enriched tumor biological pathways, such as FGER2 signaling pathway. Importantly, there were correlations and interactions through various ligand-receptor links among epithelial cells and m7G-related TME cell clusters. CONCLUSION Our study revealed tumor-associated characteristics and immune dysregulation in the NPC microenvironment under the regulation of m7G-related TME cells. These results demonstrated the underlying regulatory roles of m7G in NPC.
Collapse
Affiliation(s)
- Zhen Long
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou City, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaochen Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou City, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Deng
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou City, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Tan
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou City, Guangdong Province, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou City, Guangdong Province, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Ye J, Liu F, Zhang L, Wu C, Jiang A, Xie T, Jiang H, Li Z, Luo P, Jiao J, Xiao J. MOCS, a novel classifier system integrated multimoics analysis refining molecular subtypes and prognosis for skin melanoma. J Biomol Struct Dyn 2024:1-17. [PMID: 38555737 DOI: 10.1080/07391102.2024.2329305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
PURPOSE The present investigation focuses on Skin Cutaneous Melanoma (SKCM), a melanocytic carcinoma characterized by marked aggression, significant heterogeneity, and a complex etiological background, factors which collectively contribute to the challenge in prognostic determinations. We defined a novel classifier system specifically tailored for SKCM based on multiomics. METHODS We collected 423 SKCM samples with multi omics datasets to perform a consensus cluster analysis using 10 machine learning algorithms and verified in 2 independent cohorts. Clinical features, biological characteristics, immune infiltration pattern, therapeutic response and mutation landscape were compared between subtypes. RESULTS Based on consensus clustering algorithms, we identified two Multi-Omics-Based-Cancer-Subtypes (MOCS) in SKCM in TCGA project and validated in GSE19234 and GSE65904 cohorts. MOCS2 emerged as a subtype with poor prognosis, characterized by a complex immune microenvironment, dysfunctional anti-tumor immune state, high cancer stemness index, and genomic instability. MOCS2 exhibited resistance to chemotherapy agents like erlotinib and sunitinib while sensitive to rapamycin, NSC87877, MG132, and FH355. Additionally, ELSPBP1 was identified as the target involving in glycolysis and M2 macrophage infiltration in SKCM. CONCLUSIONS MOCS classification could stably predict prognosis of SKCM; patients with a high cancer stemness index combined with genomic instability may be predisposed to an immune exhaustion state.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Juelan Ye
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Fuchun Liu
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University (Second Military Medical University), Shanghai, China
| | - Luoshen Zhang
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University (Second Military Medical University), Shanghai, China
| | - Chunbiao Wu
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University (Second Military Medical University), Shanghai, China
- School of Health Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Tianying Xie
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University (Second Military Medical University), Shanghai, China
- School of Health Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Hao Jiang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University (Second Military Medical University), Shanghai, China
- School of Health Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhenxi Li
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University (Second Military Medical University), Shanghai, China
- School of Health Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Jiao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jianru Xiao
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Orthopedic, Changzheng Hospital Affiliated to Naval Medical University (Second Military Medical University), Shanghai, China
- School of Health Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Han M, Huang Q, Li X, Chen X, Zhu H, Pan Y, Zhang B. M7G-related tumor immunity: novel insights of RNA modification and potential therapeutic targets. Int J Biol Sci 2024; 20:1238-1255. [PMID: 38385078 PMCID: PMC10878144 DOI: 10.7150/ijbs.90382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024] Open
Abstract
RNA modifications play a pivotal role in regulating cellular biology by exerting influence over distribution features and molecular functions at the post-transcriptional level. Among these modifications, N7-methylguanosine (m7G) stands out as one of the most prevalent. Over recent years, significant attention has been directed towards understanding the implications of m7G modification. This modification is present in diverse RNA molecules, including transfer RNAs, messenger RNAs, ribosomal RNAs, and other noncoding RNAs. Its regulation occurs through a series of specific methyltransferases and m7G-binding proteins. Notably, m7G modification has been implicated in various diseases, prominently across multiple cancer types. Earlier studies have elucidated the significance of m7G modification in the context of immune biology regulation within the tumor microenvironment. This comprehensive review culminates in a synthesis of findings related to the modulation of immune cells infiltration, encompassing T cells, B cells, and various innate immune cells, all orchestrated by m7G modification. Furthermore, the interplay between m7G modification and its regulatory proteins can profoundly affect the efficacy of diverse adjuvant therapeutics, thereby potentially serving as a pivotal biomarker and therapeutic target for combinatory interventions in diverse cancer types.
Collapse
Affiliation(s)
- Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Xinxin Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei 430030, China
| |
Collapse
|