1
|
Ismail S, Barakat K. Designing a multi-neoantigen vaccine for melanoma: Integrating immunoinformatics and biophysics methods. Comput Biol Med 2025; 190:110081. [PMID: 40179808 DOI: 10.1016/j.compbiomed.2025.110081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Abstract
Cancer usually evolves through the accumulation of several genetic alterations. In this context, somatic mutations create tumor-specific neoepitopes, termed neoantigens. These neoantigens are recognized by T cells as non-self, rendering them prime candidates for cancer vaccine design. Such vaccines train the human defense system to identify and eliminate cancer cells effectively Therefore, neoantigen-based vaccines can be a viable strategy for cancer immunotherapy. Their distinctive capacity to trigger a specific immune response against cancer cells highlights their importance as a promising cancer immunotherapy approach. The objective of the current study is to use various computer-aided design tools to hypothesize a multi-neoepitope vaccine construct (MNVC) to target melanoma. In building this multi-neoantigen-based vaccine, we used experimentally verified neoantigens from the cancer epitope database and analytical resources (CEDAR), ensuring the relevance of our approach. A collection of 700 neoantigens from the CEDAR database was subjected to immunoinformatics analysis, shortlisting them to 08 neoantigens. These were linked together using GPGPG linkers to create an MNVC, subsequently conjugated to a β-defensin adjuvant through an EAAAK linker to enhance immune response. The construct was predicted to be highly antigenic, with an antigenic score of 0.8335. Molecular docking revealed binding affinity with immune receptors such as MHC-I, MHC-II, and TLR-9 with estimated energy scores of -1045.5, -1517.9, and -1020.1 kcal/mol, respectively. This study suggestes that the designed vaccine candidate might exhibit potential as a treatment for melanoma cancer. Further experimental testing is essential to confirm its effectiveness and safety in elicting an immune response.
Collapse
Affiliation(s)
- Saba Ismail
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Canada.
| |
Collapse
|
2
|
Yasmeen N, Ahmad Chaudhary A, K Niraj RR, Lakhawat SS, Sharma PK, Kumar V. Screening of phytochemicals from Clerodendrum inerme (L.) Gaertn as potential anti-breast cancer compounds targeting EGFR: an in-silico approach. J Biomol Struct Dyn 2025; 43:2781-2823. [PMID: 38141177 DOI: 10.1080/07391102.2023.2294379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 12/25/2023]
Abstract
Breast cancer (BC) is the most prevalent malignancy among women around the world. The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor (RTK) of the ErbB/HER family. It is essential for triggering the cellular signaling cascades that control cell growth and survival. However, perturbations in EGFR signaling lead to cancer development and progression. Hence, EGFR is regarded as a prominent therapeutic target for breast cancer. Therefore, in the current investigation, EGFR was targeted with phytochemicals from Clerodendrum inerme (L.) Gaertn (C. inerme). A total of 121 phytochemicals identified by gas chromatography-mass spectrometry (GC-MS) analysis were screened against EGFR through molecular docking, ADMET analyses (Absorption, Distribution, Metabolism, Excretion, and Toxicity), PASS predictions, and molecular dynamics simulation, which revealed three potential hit compounds with CIDs 10586 [i.e. alpha-bisabolol (-6.4 kcal/mol)], 550281 [i.e. 2,(4,4-Trimethyl-3-hydroxymethyl-5a-(3-methyl-but-2-enyl)-cyclohexene) (-6.5 kcal/mol)], and 161271 [i.e. salvigenin (-7.4 kcal/mol)]. The FDA-approved drug gefitinib was used to compare the inhibitory effects of the phytochemicals. The top selected compounds exhibited good ADMET properties and obeyed Lipinski's rule of five (ROF). The molecular docking analysis showed that salvigenin was the best among the three compounds and formed bonds with the key residue Met 793. Furthermore, the molecular mechanics generalized born surface area (MMGBSA) calculations, molecular dynamics simulation, and normal mode analysis validated the binding affinity of the compounds and also revealed the strong stability and compactness of phytochemicals at the docked site. Additionally, DFT and DOS analyses were done to study the reactivity of the compounds and to further validate the selected phytochemicals. These results suggest that the identified phytochemicals possess high inhibitory potential against the target EGFR and can treat breast cancer. However, further in vitro and in vivo investigations are warranted towards the development of these constituents into novel anti-cancer drugs.
Collapse
Affiliation(s)
- Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | | | | | | | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
- Amity Institute of Pharmacy, Amity University Rajasthan, Jaipur, India
| |
Collapse
|
3
|
Mishra SK, Senathilake KS, Kumar N, Patel CN, Uddin MB, Alqahtani T, Alqahtani A, Alharbi HM, Georrge JJ. Exploratory algorithms to devise multi-epitope subunit vaccine by examining HIV-1 envelope glycoprotein: An immunoinformatics and viroinformatics approach. PLoS One 2025; 20:e0318523. [PMID: 40014623 DOI: 10.1371/journal.pone.0318523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/16/2025] [Indexed: 03/01/2025] Open
Abstract
Acquired immune deficiency syndrome (AIDS), a widespread pandemic and severe health issue, is triggered by the human immunodeficiency virus (HIV); there is no specific vaccine to cure this infection, and the situation is worsening. Therefore, this research sought to develop a vaccine with multiple epitopes against this infection targeting envelope glycoprotein (vital in host-cell interaction) through the immunoinformatics and viroinformatics approach. We identified one B-cell, eight MHC-I, and four MHC-II epitopes on its immunogen-assisted screening. In addition, these putative epitopes were conjoined concurrently using a specific linker (EAAAK, KK, GPGPG), including an adjuvant and a His-Tag at the N and C terminal, respectively, to augment its immune reaction. The final constructed entity consists of 284 amino acids; immunological evaluation demonstrated that the developed vaccine possesses antigenic features with a value of 0.6222, is non-allergenic, and has prospective physiochemical characteristics. The secondary and tertiary structures were anticipated, and their quality has been evaluated. Further, docking analysis between vaccines with TLR3 shows a strong molecular interaction with a -20.0 kcal/mol binding energy, and the stability was analysed through the MD simulation (100ns). Moreover, the designed vaccine expression and immune response were analysed, and a high vaccine expression level was found (pET28a (+)) and robust immune response followed by codon adaptation index value 0.94, 58.36% GC content, and the generation of IgM + IgG, cytokines and interleukin. Based on overall investigation, the developed vaccine stimulates a robust immune response. Nevertheless, laboratory analysis is needed to confirm the protective potency of the vaccine.
Collapse
Affiliation(s)
- Saurav Kumar Mishra
- Department of Bioinformatics, University of North Bengal, Darjeeling, West Bengal, India
| | | | - Neeraj Kumar
- Department of Pharmaceutical Chemistry Bhupal Nobles, College of Pharmacy, Udaipur, Rajasthan, India
| | - Chirag N Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Science, Gujarat University, Ahmedabad, India
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - Mohammad Borhan Uddin
- Computational Biology Research Laboratory, Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ali Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Hanan M Alharbi
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - John J Georrge
- Department of Bioinformatics, University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
4
|
Ullah A, Rehman B, Khan S, Almanaa TN, Waheed Y, Hassan M, Naz T, Ul Haq M, Muhammad R, Sanami S, Irfan M, Ahmad S. An In Silico Multi-epitopes Vaccine Ensemble and Characterization Against Nosocomial Proteus penneri. Mol Biotechnol 2024; 66:3498-3513. [PMID: 37934390 DOI: 10.1007/s12033-023-00949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/12/2023] [Indexed: 11/08/2023]
Abstract
Proteus penneri (P. penneri) is a bacillus-shaped, gram-negative, facultative anaerobe bacterium that is primarily an invasive pathogen and the etiological agent of several hospital-associated infections. P. penneri strains are naturally resistant to macrolides, amoxicillin, oxacillin, penicillin G, and cephalosporins; in addition, no vaccines are available against these strains. This warrants efforts to propose a theoretical based multi-epitope vaccine construct to prevent pathogen infections. In this research, reverse vaccinology bioinformatics and immunoinformatics approaches were adopted for vaccine target identification and construction of a multi-epitope vaccine. In the first phase, a core proteome dataset of the targeted pathogen was obtained using the NCBI database and subjected to bacterial pan-genome analysis using bacterial pan-genome analysis (BPGA) to predict core protein sequences which were then used to find good vaccine target candidates. This identified two proteins, Hcp family type VI secretion system effector and superoxide dismutase family protein, as promising vaccine targets. Afterward using the IEDB database, different B-cell and T-cell epitopes were predicted. A set of four epitopes "KGSVNVQDRE, NTGKLTGTR, IIHSDSWNER, and KDGKPVPALK" were chosen for the development of a multi-epitope vaccine construct. A 183 amino acid long vaccine design was built along with "EAAAK" and "GPGPG" linkers and a cholera toxin B-subunit adjuvant. The designed vaccine model comprised immunodominant, non-toxic, non-allergenic, and physicochemical stable epitopes. The model vaccine was docked with MHC-I, MHC-II, and TLR-4 immune cell receptors using the Cluspro2.0 web server. The binding energy score of the vaccine was - 654.7 kcal/mol for MHC-I, - 738.4 kcal/mol for MHC-II, and - 695.0 kcal/mol for TLR-4. A molecular dynamic simulation was done using AMBER v20 package for dynamic behavior in nanoseconds. Additionally, MM-PBSA binding free energy analysis was done to test intermolecular binding interactions between docked molecules. The MM-GBSA net binding energy score was - 148.00 kcal/mol, - 118.00 kcal/mol, and - 127.00 kcal/mol for vaccine with TLR-4, MHC-I, and MHC-II, respectively. Overall, these in silico-based predictions indicated that the vaccine is highly promising in terms of developing protective immunity against P. penneri. However, additional experimental validation is required to unveil the real immune response to the designed vaccine.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 2500, Pakistan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Bushra Rehman
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | - Saifullah Khan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, Pakistan
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, 1401, Lebanon
| | - Muhammad Hassan
- Department of Pharmacy, Bacha Khan University, Charsadda, 24461, Pakistan
| | - Tahira Naz
- Department of Chemical and Life Sciences, Qurtuba University of Science and Technology, Peshawar, Pakistan
| | - Mehboob Ul Haq
- Department of Pharmacy, Abasyn University, Peshawar, 25000, Pakistan
| | - Riaz Muhammad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 2500, Pakistan
| | - Samira Sanami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, 32611, USA
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 2500, Pakistan.
- Department of Natural Sciences, Lebanese American University, P.O. Box 36, Beirut, Lebanon.
| |
Collapse
|
5
|
Almanaa TN. Design of an Epitope-Based Vaccine Against MERS-CoV. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1632. [PMID: 39459420 PMCID: PMC11509718 DOI: 10.3390/medicina60101632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Background and Objectives: Middle East Respiratory Syndrome (MERS) is a viral respiratory illness caused by a coronavirus called Middle East respiratory syndrome. In the current study, immunoinformatics studies were applied to design an epitope-based vaccine construct against Middle East Respiratory Syndrome. Materials and Methods: In this study, epitopes base vaccine construct was designed against MERS using immunoinformatics approach. Results: In this approach, the targeted proteins were screened, and probable antigenic, non-allergenic, and good water-soluble epitopes were selected for vaccine construction. In vaccine construction, the selected epitopes were joined by GPGPG linkers, and a linear multi-epitope vaccine was constructed. The vaccine construct underwent a physiochemical property analysis. The 3D structure of the vaccine construct was predicted and subjected to refinement. After the refinement, the 3D model was subjected to a molecular docking analysis, TLRs (TLR-3 and TLR-9) were selected as receptors for vaccine construct, and the molecular docking analysis study determined that the vaccine construct has binding ability with the targeted receptor. Conclusions: The docking analysis also unveils that the vaccine construct can properly activate immune system against the target virus however experimental validation is needed to confirm the in silico findings further.
Collapse
Affiliation(s)
- Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Alhassan HH, Ullah MI, Niazy AA, Alzarea SI, Alsaidan OA, Alzarea AI, Alsaidan AA, Alhassan AA, Alruwaili M, Alruwaili YS. Exploring glutathione transferase and Cathepsin L-like proteinase for designing of epitopes-based vaccine against Fasciola hepatica by immunoinformatics and biophysics studies. Front Immunol 2024; 15:1478107. [PMID: 39391319 PMCID: PMC11464328 DOI: 10.3389/fimmu.2024.1478107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Fasciolosis is a zoonotic infection and is considered a developing deserted tropical illness threatening ruminant productivity and causing financial losses. Herein, we applied immunoinformatics and biophysics studies to develop an epitopes vaccine against Fasciola hepatica using glutathione transferase and Cathepsin L-like proteinase as possible vaccine candidates. Using the selected proteins, B- and T-cell epitopes were predicted. After epitopes prediction, the epitopes were clarified over immunoinformatics screening, and only five epitopes, EFGRWQQEKCTIDLD, RRNIWEKNVKHIQEH, FKAKYLTEMSRASDI, TDMTFEEFKAKYLTE, and YTAVEGQCR were selected for vaccine construction; selected epitopes were linked with the help of a GPGPG linker and attached with an adjuvant through another linker, EAAAK linker. Cholera toxin B subunit was used as an adjuvant. The ExPASy ProtParam tool server predicted 234 amino acids, 25.86257 kDa molecular weight, 8.54 theoretical pI, 36.86 instability index, and -0.424 grand average of hydropathicity. Molecular docking analysis predicted that the vaccine could activate the immune system against F. hepatica. We calculated negative binding energy values. A biophysics study, likely molecular docking molecular dynamic simulation, further validated the docking results. In molecular dynamic simulation analysis, the top hit docked compounds with the lowest binding energy values were subjected to MD simulation; the simulation analysis showed that the vaccine and immune cell receptors are stable and can activate the immune system. MMGBSA of -146.27 net energy (kcal/mol) was calculated for the vaccine-TLR2 complex, while vaccine-TLR4 of -148.11 net energy (kcal/mol) was estimated. Furthermore, the C-ImmSim bioinformatics tool predicted that the vaccine construct can activate the immune system against F. hepatica, eradicate the infection caused by F. hepatica, and reduce financial losses that need to be spent while protecting against infections of F. hepatica. The computational immune simulation unveils that the vaccine model can activate the immune system against F. hepatica; hence, the experimental scientist can validate the finding accomplished through computational approaches.
Collapse
Affiliation(s)
- Hassan H. Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Abdurahman A. Niazy
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Aseel Awad Alsaidan
- Department of Family and Community Medicine, College of Medicine, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Abulaziz A. Alhassan
- Department of Pediatric, Domat Aljandal General Hospital, Ministry of Health, Domat Aljandal, Al-Jouf, Saudi Arabia
| | - Muharib Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Yasir S. Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
- Sustainable Development Research and Innovation Center, Deanship of Graduate Studies and Scientific Research, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
7
|
Oladipo EK, Oyelakin OD, Aiyelabegan AO, Olajide EO, Olatayo VO, Owolabi KP, Shittu YB, Olugbodi RO, Ajala HA, Rukayat RA, Olayiwola DO, Irewolede BA, Jimah EM, Oloke JK, Ojo TO, Ajani OF, Iwalokun BA, Kolawole OM, Ariyo OE, Adediran DA, Olufemi SE, Onyeaka H. Exploring computational approaches to design mRNA Vaccine against vaccinia and Mpox viruses. Immun Inflamm Dis 2024; 12:e1360. [PMID: 39150224 PMCID: PMC11328121 DOI: 10.1002/iid3.1360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Messenger RNA (mRNA) vaccines emerged as a powerful tool in the fight against infections. Unlike traditional vaccines, this unique type of vaccine elicits robust and persistent innate and humoral immune response with a unique host cell-mediated pathogen gene expression and antigen presentation. METHODS This offers a novel approach to combat poxviridae infections. From the genome of vaccinia and Mpox viruses, three key genes (E8L, E7R, and H3L) responsible for virus attachment and virulence were selected and employed for designing the candidate mRNA vaccine against vaccinia and Mpox viral infection. Various bioinformatics tools were employed to generate (B cell, CTL, and HTL) epitopes, of which 28 antigenic and immunogenic epitopes were selected and are linked to form the mRNA vaccine construct. Additional components, including a 5' cap, 5' UTR, adjuvant, 3' UTR, and poly(A) tail, were incorporated to enhance stability and effectiveness. Safety measures such as testing for human homology and in silico immune simulations were implemented to avoid autoimmunity and to mimics the immune response of human host to the designed mRNA vaccine, respectively. The mRNA vaccine's binding affinity was evaluated by docking it with TLR-2, TLR-3, TLR-4, and TLR-9 receptors which are subsequently followed by molecular dynamics simulations for the highest binding one to predict the stability of the binding complex. RESULTS With a 73% population coverage, the mRNA vaccine looks promising, boasting a molecular weight of 198 kDa and a molecular formula of C8901H13609N2431O2611S48 and it is said to be antigenic, nontoxic and nonallergic, making it safe and effective in preventing infections with Mpox and vaccinia viruses, in comparison with other insilico-designed vaccine for vaccinia and Mpox viruses. CONCLUSIONS However, further validation through in vivo and in vitro techniques is underway to fully assess its potential.
Collapse
Affiliation(s)
- Elijah K. Oladipo
- Division of Vaccine Design and DevelopmentHelix Biogen InstituteOgbomosoOyo StateNigeria
- Laboratory of Molecular Biology, Immunology and Bioinformatics, Department of MicrobiologyAdeleke UniversityEdeOsun StateNigeria
| | - Olanrewaju D. Oyelakin
- Division of Vaccine Design and DevelopmentHelix Biogen InstituteOgbomosoOyo StateNigeria
| | | | - Elizabeth O. Olajide
- Division of Vaccine Design and DevelopmentHelix Biogen InstituteOgbomosoOyo StateNigeria
- Molecular Biology and Biotechnology DepartmentNigeria Institute of Medical ResearchLagosNigeria
| | - Victoria O. Olatayo
- Division of Vaccine Design and DevelopmentHelix Biogen InstituteOgbomosoOyo StateNigeria
| | - Kaothar P. Owolabi
- Division of Vaccine Design and DevelopmentHelix Biogen InstituteOgbomosoOyo StateNigeria
| | - Yewande B. Shittu
- Division of Vaccine Design and DevelopmentHelix Biogen InstituteOgbomosoOyo StateNigeria
| | - Rhoda O. Olugbodi
- Division of Vaccine Design and DevelopmentHelix Biogen InstituteOgbomosoOyo StateNigeria
| | - Hezekiah A. Ajala
- Division of Vaccine Design and DevelopmentHelix Biogen InstituteOgbomosoOyo StateNigeria
| | - Raji A. Rukayat
- Division of Vaccine Design and DevelopmentHelix Biogen InstituteOgbomosoOyo StateNigeria
| | - Deborah O. Olayiwola
- Division of Vaccine Design and DevelopmentHelix Biogen InstituteOgbomosoOyo StateNigeria
| | | | - Esther M. Jimah
- Division of Vaccine Design and DevelopmentHelix Biogen InstituteOgbomosoOyo StateNigeria
| | - Julius K. Oloke
- Department of Natural SciencesPrecious Cornerstone UniversityIbadanOyo StateNigeria
| | - Taiwo O. Ojo
- Division of Vaccine Design and DevelopmentHelix Biogen InstituteOgbomosoOyo StateNigeria
| | | | - Bamidele A. Iwalokun
- Molecular Biology and Biotechnology DepartmentNigeria Institute of Medical ResearchLagosNigeria
| | | | - Olumuyiwa E. Ariyo
- Department of Medicine, Infectious Disease and Tropical Medicine UnitFederal Teaching HospitalIdo EkitiEkiti StateNigeria
| | - Daniel A. Adediran
- Division of Vaccine Design and DevelopmentHelix Biogen InstituteOgbomosoOyo StateNigeria
- Department of BiochemistryLadoke Akintola University of TechnologyOgbomosoOyo StateNigeria
| | - Seun E. Olufemi
- Division of Vaccine Design and DevelopmentHelix Biogen InstituteOgbomosoOyo StateNigeria
- Department of BiochemistryLadoke Akintola University of TechnologyOgbomosoOyo StateNigeria
| | - Helen Onyeaka
- School of Chemical EngineeringUniversity of BirminghamBirminghamUK
| |
Collapse
|
8
|
Aiman S, Ali Y, Malik A, Alkholief M, Ahmad A, Akhtar S, Ali S, Khan A, Li C, Shams S. Immunoinformatic-guided novel mRNA vaccine designing to elicit immunogenic responses against the endemic Monkeypox virus. J Biomol Struct Dyn 2024; 42:6292-6306. [PMID: 37424185 DOI: 10.1080/07391102.2023.2233627] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Monkeypox virus (MPXV) is an orthopoxvirus, causing zoonotic infections in humans with smallpox-like symptoms. The WHO reported MPXV cases in May 2022 and the outbreak caused significant morbidity threats to immunocompromised individuals and children. Currently, no clinically validated therapies are available against MPXV infections. The present study is based on immunoinformatics approaches to design mRNA-based novel vaccine models against MPXV. Three proteins were prioritized based on high antigenicity, low allergenicity, and toxicity values to predict T- and B-cell epitopes. Lead T- and B-cell epitopes were used to design vaccine constructs, linked with epitope-specific linkers and adjuvant to enhance immune responses. Additional sequences, including Kozak sequence, MITD sequence, tPA sequence, Goblin 5', 3' UTRs, and a poly(A) tail were added to design stable and highly immunogenic mRNA vaccine construct. High-quality structures were predicted by molecular modeling and 3D-structural validation of the vaccine construct. Population coverage and epitope-conservancy speculated broader protection of designed vaccine model against multiple MPXV infectious strains. MPXV-V4 was eventually prioritized based on its physicochemical and immunological parameters and docking scores. Molecular dynamics and immune simulations analyses predicted significant structural stability and binding affinity of the top-ranked vaccine model with immune receptors to elicit cellular and humoral immunogenic responses against the MPXV. The pursuance of experimental and clinical follow-up of these prioritized constructs may lay the groundwork to develop safe and effective vaccine against MPXV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yasir Ali
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abbas Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Suhail Akhtar
- A.T. Still University of Health Sciences, Kirksville, MO, USA
| | - Sajid Ali
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
9
|
Yeshiwas AG, Temesegen A, Melkie G, Tsega TD, Mola A, Tesfa H, Shimels A, Asmamaw M, Shiferaw A, Tsegaye D, Muchie E, Tesfaye D, Yenew C. Assessing healthcare workers' confidence level in diagnosing and managing emerging infectious virus of human mpox in hospitals in Amhara Region, Northwest Ethiopia: multicentre institution-based cross-sectional study. BMJ Open 2024; 14:e080791. [PMID: 38969376 PMCID: PMC11227793 DOI: 10.1136/bmjopen-2023-080791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/10/2024] [Indexed: 07/07/2024] Open
Abstract
OBJECTIVE To assess healthcare workers' (HCWs) confidence level in diagnosing and managing mpox disease and its associated factors in hospitals in the Amhara Region. DESIGN Institution-based cross-sectional study. SETTING Hospitals in the Amhara Region, Northwest Ethiopia. PARTICIPANTS A total of 640 HCWs, with a response rate of 96.9%, participated from 1 October to 30 December 2022. A multistage stratified random sampling technique with proportional allocation was used to recruit study participants. Data were collected using the KoboCollect toolbox and exported to STATA V.17 for analysis. Descriptive statistics were used to describe data. Ordinal logistic regression analysis was used to identify predictors of confidence level to diagnose and manage mpox at p<0.05. PRIMARY OUTCOME HCWs' confidence level in diagnosing and managing mpox disease and its associated factors. RESULTS The overall proportion of HCWs who had high confidence level in diagnosing and managing mpox disease was found to be 31.5% (95% CI: 27.9%, 35.2%). Similarly, 26.8% (95% CI: 23.2%, 30.3%) and 41.8% (95% CI: 38.1%, 45.4%) of HCWs expressed medium and low confidence level to diagnose and manage the disease, respectively. The odds of higher confidence versus lower or medium confidence level in diagnosing and managing mpox were greater for HCWs who regularly visit amenable websites (adjusted OR (AOR)=1.59, 95% CI: 1.16, 2.2), were physicians (AOR=1.9, 95% CI: 1.32, 2.73), were aged 30-35 years old (AOR=1.64, 95% CI: 1.12, 2.39), had got public health emergency epidemic disease management training (AOR=2.8, 95% CI: 1.94, 4.04) and had positive attitudes (AOR=1.72, 95% CI: 1.26, 2.36) compared with their counterparts. CONCLUSION The overall confidence level of HCWs in diagnosing and managing mpox disease in the study area was low. Therefore, the HCWs should be regularly updated about mpox disease through morning sessions and training in the diagnosis and clinical management of mpox disease including infection prevention and control.
Collapse
Affiliation(s)
- Almaw Genet Yeshiwas
- Department of Environmental Health, Injibara University, Injibara, Amhara, Ethiopia
| | - Abathun Temesegen
- Department of Environmental Health, Injibara University, Injibara, Amhara, Ethiopia
| | - Gashaw Melkie
- Department of Environmental Health, Injibara University, Injibara, Amhara, Ethiopia
| | - Tilahun Degu Tsega
- Department of Public Health, Injibara University, Injibara, Amhara, Ethiopia
| | - Abebaw Mola
- Department of Public Health, Injibara University, Injibara, Amhara, Ethiopia
| | - Hiwot Tesfa
- Department of Public Health, Injibara University, Injibara, Amhara, Ethiopia
| | - Aschale Shimels
- Department of Environmental Health, Injibara University, Injibara, Amhara, Ethiopia
| | - Mengist Asmamaw
- Department of Environmental Health, Injibara University, Injibara, Amhara, Ethiopia
| | - Anley Shiferaw
- Department of Epidemology, Bichena Hospital, Injibara, Amhara, Ethiopia
| | - Dejen Tsegaye
- Department of Public Health, West Gojjam Zone, Finoteselam, Amhara, Ethiopia
| | - Esubalew Muchie
- Department of Public Health, Dangila Primary Hospital, Dangila, Amhara, Ethiopia
| | - Derseh Tesfaye
- Department of Public Health, Dejen Primary Hospital, Dejen, Amhara, Ethiopia
| | - Chalachew Yenew
- Department of Environmental Health Sciences, Public Health, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
10
|
Alharbi M, Alshammari A, Alsabhan JF, Alzarea SI, Alshammari T, Alasmari F, Alasmari AF. A novel vaccine construct against Zika virus fever: insights from epitope-based vaccine discovery through molecular modeling and immunoinformatics approaches. Front Immunol 2024; 15:1426496. [PMID: 39050858 PMCID: PMC11267680 DOI: 10.3389/fimmu.2024.1426496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
The Zika virus (ZIKV) is an emerging virus associated with the Flaviviridae family that mainly causes infection in pregnant women and leads to several abnormalities during pregnancy. This virus has unique properties that may lead to pathological diseases. As the virus has the ability to evade immune response, a crucial effort is required to deal with ZIKV. Vaccines are a safe means to control different pathogenic infectious diseases. In the current research, a multi-epitope-based vaccination against ZIKV is being designed using in silico methods. For the epitope prediction and prioritization phase, ZIKV polyprotein (YP_002790881.1) and flavivirus polyprotein (>YP_009428568.1) were targeted. The predicted B-cell epitopes were used for MHC-I and MHC-II epitope prediction. Afterward, several immunoinformatics filters were applied and nine (REDLWCGSL, MQDLWLLRR, YKKSGITEV, TYTDRRWCF, RDAFPDSNS, KPSLGLINR, ELIGRARVS, AITQGKREE, and EARRSRRAV) epitopes were found to be probably antigenic in nature, non-allergenic, non-toxic, and water soluble without any toxins. Selected epitopes were joined using a particular GPGPG linker to create the base vaccination for epitopes, and an extra EAAAK linker was used to link the adjuvant. A total of 312 amino acids with a molecular weight (MW) of 31.62762 and an instability value of 34.06 were computed in the physicochemical characteristic analysis, indicating that the vaccine design is stable. The molecular docking analysis predicted a binding energy of -329.46 (kcal/mol) for TLR-3 and -358.54 (kcal/mol) for TLR-2. Moreover, the molecular dynamics simulation analysis predicted that the vaccine and receptor molecules have stable binding interactions in a dynamic environment. The C-immune simulation analysis predicted that the vaccine has the ability to generate both humoral and cellular immune responses. Based on the design, the vaccine construct has the best efficacy to evoke immune response in theory, but experimental analysis is required to validate the in silico base approach and ensure its safety.
Collapse
Affiliation(s)
- Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jawza F. Alsabhan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Talal Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Karkashan A. Immunoinformatics assisted profiling of West Nile virus proteome to determine immunodominant epitopes for the development of next-generation multi-peptide vaccine. Front Immunol 2024; 15:1395870. [PMID: 38799422 PMCID: PMC11116617 DOI: 10.3389/fimmu.2024.1395870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Emerging infectious diseases represent a significant threat to global health, with West Nile virus (WNV) being a prominent example due to its potential to cause severe neurological disorders alongside mild feverish conditions. Particularly prevalent in the continental United States, WNV has emerged as a global concern, with outbreaks indicating the urgent need for effective prophylactic measures. The current problem is that the absence of a commercial vaccine against WNV highlights a critical gap in preventive strategies against WNV. This study aims to address this gap by proposing a novel, multivalent vaccine designed using immunoinformatics approaches to elicit comprehensive humoral and cellular immune responses against WNV. The objective of the study is to provide a theoretical framework for experimental scientists to formulate of vaccine against WNV and tackle the current problem by generating an immune response inside the host. The research employs reverse vaccinology and subtractive proteomics methodologies to identify NP_041724.2 polyprotein and YP_009164950.1 truncated flavivirus polyprotein NS1 as the prime antigens. The selection process for epitopes focused on B and T-cell reactivity, antigenicity, water solubility, and non-allergenic properties, prioritizing candidates with the potential for broad immunogenicity and safety. The designed vaccine construct integrates these epitopes, connected via GPGPG linkers, and supplemented with an adjuvant with the help of another linker EAAAK, to enhance immunogenicity. Preliminary computational analyses suggest that the proposed vaccine could achieve near-universal coverage, effectively targeting approximately 99.74% of the global population, with perfect coverage in specific regions such as Sweden and Finland. Molecular docking and immune simulation studies further validate the potential efficacy of the vaccine, indicating strong binding affinity with toll-like receptor 3 (TLR-3) and promising immune response profiles, including significant antibody-mediated and cellular responses. These findings present the vaccine construct as a viable candidate for further development and testing. While the theoretical and computational results are promising, advancing from in-silico predictions to a tangible vaccine requires comprehensive laboratory validation. This next step is essential to confirm the vaccine's efficacy and safety in eliciting an immune response against WNV. Through this study, we propose a novel approach to vaccine development against WNV and contribute to the broader field of immunoinformatics, showcasing the potential to accelerate the design of effective vaccines against emerging viral threats. The journey from hypothesis to practical solution embodies the interdisciplinary collaboration essential for modern infectious disease management and prevention strategies.
Collapse
Affiliation(s)
- Alaa Karkashan
- Department of Biological Sciences, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Lahimchi MR, Madanchi H, Ahmadi K, Shahbazi B, Yousefi B. In silico designing a novel TLR4-mediating multiepitope vaccine against monkeypox via advanced immunoinformatics and bioinformatics approaches. J Biomol Struct Dyn 2024; 42:2094-2110. [PMID: 37129119 DOI: 10.1080/07391102.2023.2203253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Monkeypox virus is a member of the Poxviridae family, which causes monkeypox zoonotic disease. Since July 2022, the prevention of monkeypox have become more considerable due to the new outbreak, making it a global concern. Therefore, we used an in silico-based method, including immunoinformatics, bioinformatics, molecular docking, and gene cloning approaches to design a novel multiepitope vaccine against monkeypox. Three immunogenic envelope proteins of monkeypox virus, including G10R, E8L, and A30L, were selected to predict appropriate immune system stimulator epitopes. The A30L is common between smallpox and monkeypox virus, so the proposed vaccine may be effective against smallpox too. There is no evidence of allergenicity and toxicity of the vaccine epitopes. To boost the immunogenicity of the designed vaccine, we used the helper epitope of PADRE and RS01as adjuvants. Furthermore, some linkers are used to link epitopes and adjuvants together. The physicochemical futures of the designed vaccine were assessed. The tertiary structure of the vaccine was modeled and then refined to improve its structure and physicochemical properties. To analyze the vaccine construct and TLR4 complex affinity, they were docked to gather. Besides, the vaccine was cloned into E.coli. pET-21b(+) plasmid to reveal that it can be expressed and stimulate the immune system. Immune stimulation evaluation showed that the candidate vaccine could induce the production of IgM, IgG1, and IgG2 antibodies. Overall, we suggested an effective vaccine candidate against monkeypox. However, Future studies and clinical trials should be done to ensure the efficacy and safety of this vaccine.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Reza Lahimchi
- Department of Medical Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Khadijeh Ahmadi
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Behzad Shahbazi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Bahman Yousefi
- Department of Medical Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
13
|
Arshad SF, Rehana R, Saleem MA, Usman M, Arshad HJ, Rizwana R, Shakeela S, Rukh AS, Khan IA, Hayssam MA, Anwar M. Multi-epitopes vaccine design for surface glycoprotein against SARS-CoV-2 using immunoinformatic approach. Heliyon 2024; 10:e24186. [PMID: 38298616 PMCID: PMC10827691 DOI: 10.1016/j.heliyon.2024.e24186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Background The recent COVID vaccinations have successfully reduced death and severity but did not stop the transmission of viruses by the emerging SARS-CoV-2 strain. There is a need for better and long-lasting dynamic vaccines for numerous prevailing strains and the evolving SARS-CoV-2 virus, necessitating the development of broad-spectrum strains being used to stop infection by reducing the spread rate and re-infection. The spike (S) glycoprotein is one of the proteins expressed commonly in the early phases of SARS-CoV-2 infection. It has been identified as the most immunogenic protein of SARS-CoV-2. Methods In this study, advanced bioinformatics techniques have been exploited to design the novel multi-epitope vaccine using conserved S protein portions from widespread strains of SARS-CoV-2 to predict B cell and T cell epitopes. These epitopes were selected based on toxicity, antigenicity score and immunogenicity. Epitope combinations were used to construct the maximum potent multi-epitope construct with potential immunogenic features. EAAAK, AAY, and GPGPG were used as linkers to construct epitopes. Results The developed vaccine has shown positive results. After the chimeric vaccine construct was cloned into the PET28a (+) vector for expression screening in Escherichia coli, the potential expression of the construct was identified. Conclusion The construct vaccine performed well in computer-based immune response simulation and covered a variety of allelic populations. These computational results are more helpful for further analysis of our contract vaccine, which can finally help control and prevent SARS-CoV-2 infections worldwide.
Collapse
Affiliation(s)
- Sarmad Frogh Arshad
- Department of Biochemistry and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Rehana Rehana
- Institute of Plant Breeding & Biotechnology (IPBB), Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Muhammad Asif Saleem
- Department of Plant Breeding and Genetics, Bahauddin Zakaria University, Multan, 60800, Pakistan
| | - Muhammad Usman
- Department of Biochemistry and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Hasan Junaid Arshad
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rizwana Rizwana
- Department of Biochemistry, Bahauddin Zakaria University, Multan, 60800, Pakistan
| | | | - Asma Shah Rukh
- Department of Pharmacy, College of Pharmacy Punjab University, Lahore, 54590, Pakistan
| | - Imran Ahmad Khan
- Department of Pharmacy, MNS University of Agriculture, Multan, 54590, Pakistan
| | - M. Ali Hayssam
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 1145, Saudi Arabia
| | - Muhammad Anwar
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, PR China
| |
Collapse
|
14
|
Alshiekheid MA, Dou AM, Algahtani M, Al-Megrin WAI, Alhawday YA, Alradhi AE, Bukhari K, Alharbi BF, Algefary AN, Alhunayhani BA, Allemailem KS. Bioinformatics and immunoinformatics assisted multiepitope vaccine construct against Burkholderia anthina. Saudi Pharm J 2024; 32:101917. [PMID: 38226347 PMCID: PMC10788630 DOI: 10.1016/j.jsps.2023.101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024] Open
Abstract
Burkholderia anthina is a pathogenic bacterial species belonging to the Burkholderiaceae family and it is mainly considered the etiological agent of chronic obstructive pulmonary diseases associated with cystic fibrosis, due to being intrinsic antibiotic resistant making it difficult to treat pulmonary infections. Hence increased rate of antibiotic-resistant bacterial species vaccine development is the priority to tackle this problem. In research work, we designed a multi-epitope-based vaccine construct against B. anthina using reverse vaccinology immunoinformatics and biophysical approaches. Based on the subtractive proteomic screening of core proteins we identified 3 probable antigenic proteins and good vaccine targets namely, type VI secretion system tube protein hcp Burkholderia, fimbria/pilus periplasmic chaperone and fimbrial biogenesis outer membrane usher protein. The selected 3 proteins were used for B and B cells B-derived T-cell epitopes prediction. In epitopes prediction, different epitopes were predicted with various lengths and percentile scores and subjected to further immunoinformatics analysis. In immunoinformatics screening a total number of 06, IDDGNANAL, KTVKPDPRY, SEVESGSAP, YGGDLTVEV, SVSHDTNGR, and GSKADGYQR epitopes were considered good vaccine target candidates and shortlisted for vaccine construct designing. The vaccine construct was designed by joining selected epitopes with the help of a GPGPG linker and additionally linked with cholera toxin b subunit adjuvant to increase the efficacy of the vaccine construct the sequence of the said adjuvant were retrieved from protein data bank through its (PDB ID: 5ELD). The designed vaccine construct was evaluated for its physiochemical properties analysis in which we reported that the vaccine construct comprises 216 amino acids with a molecular weight of 22.37499 kilo Dalton, 15.55 instability index (II) is computed, and this classifies that the vaccine construct is properly stable. VaxiJen v2.0 web server predicted that the vaccine construct is probable antigenic in nature with 0.6320 predicted value. Furthermore AllerTOP v. 2.0 tool predicted that the designed vaccine construct is non allergic in nature. Molecular docking analysis was done for analysis of the binding affinity of the vaccine construct with TLR-2 (PDB ID: 6NIG), the docking results predicted 799.2 kcal/mol binding energy score that represents the vaccine construct has a good binding ability with TLR-2. Moreover, molecular dynamic simulation analysis results revealed that the vaccine construct and immune cell receptor has proper binding stability over various environmental condition, i.e. change in pressure range, temperature, and motion. After each analysis, we observed that the vaccine construct is safe stable, and probably antigenic and could generate an immune response against the target pathogen but in the future, experimental analysis is still needed to verify in silico base results.
Collapse
Affiliation(s)
- Maha A. Alshiekheid
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali M. Dou
- Department of Medical Laboratories, Riyadh Security Forces Hospital, Ministry of Interior, Riyadh 11481, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca 21955, Saudi Arabia
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Yaseer Ali Alhawday
- Department of Medical Microbiology, Qassim University Medical City , Qassim University, Buraydah 51452, Saudi Arabia
| | - Arwa Essa Alradhi
- Regional Laboratory and Central Blood Bank, Hafr Al Batin 39513, Saudi Arabia
| | - Khulud Bukhari
- Department of Microbiology and Parasitology, College of Veterinary Medicine, P. O. Box 1757, Hofuf 36388, Al-Ahsa, King Faisal University, Saudi Arabia
| | - Basmah F. Alharbi
- Department of Basic Health Science, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmed N. Algefary
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Basmah Awwadh Alhunayhani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
15
|
Albutti A. An integrated multi-pronged reverse vaccinology and biophysical approaches for identification of potential vaccine candidates against Nipah virus. Saudi Pharm J 2023; 31:101826. [PMID: 38028215 PMCID: PMC10651679 DOI: 10.1016/j.jsps.2023.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Nipah virus, a paramyxovirus linked to Hendra virus that first appeared in Malaysia and is the etiological agent of viral lethal encephalitis, has emerged as a strong threat to the health community in recent decades. Viral infections are seriously affecting global health. Since there are now no efficient therapeutic options, it will take considerable effort to develop appropriate therapeutic management for the Nipah virus. The main purpose of this study was to design a messenger RNA-based multi-epitope vaccine construct against Nipah virus. This purpose was achieved through multiple immunogenic epitopes prediction using Nipah virus antigenic protein using the immune epitope database and analysis resource (IEDB) followed by the vaccine construction and processing. As in multi-epitopes vaccine construction we selected immunogenic potential fragments of viral proteins, therefore in host immune stimulation we observed proper immune responses toward a multi-epitopes vaccine. In this study, the Nipah virus V protein was used to identify immunodominant epitopes utilizing several reverse vaccinology, immunoinformatics and biophysical methods. The potential antigenic predicted epitopes were further analyzed for immunoinformatics analysis and only selected probable antigenic and non-toxic epitopes were used in designing a multi-epitope mRNA based in silico vaccine against the target pathogen. In vaccine designing a total number of 03B cell epitopes, 09 Cytotoxic T lymphocytes (CTLs) and 01 Helper T lymphocytes (HTL) were prioritized as a good vaccine candidate. In the vaccine construction phase, the selected epitopes were linked together using EAAAK, GPGPG, KK, and AAY linkers, and B-defensin (adjuvant), and MITD sequences were also added to the vaccine construct to increase the potency. After vaccine construction, the physiochemical properties of the vaccine construct were evaluated which predicted that the vaccine construct comprises 320 amino acids with 34.29 kDa (kDa) molecular weight. The instability index was 36.55 proving its stability with the aliphatic index of 82.88. Furthermore, 9.0 theoretical pI and -0.317, GRAVY (Grand Average of Hydropathy) values were predicted in physicochemical properties analysis. A solubility check was applied against the vaccine construct depicting that the vaccine construct is soluble with its calculated value of 0.6. Additionally, after prediction the 3D structure was modeled and refined for docking analysis, the refined 3D structure of the vaccine candidate was further checked for binding affinity with immune cell receptors through docking analysis, in the docking analysis we observed that the vaccine construct has a good binding affinity with immune cells receptor and can induce a proper immune response in host cells. As we predicted effective binding of the designed vaccine construct, hence it can further facilitate the development of vaccine formulation against the Nipah virus. Additionally, molecular dynamic simulation was done using the AMBER v20 package for analysis of the dynamic behaviour of the docked complexes and we observed proper binding stability of the vaccine with target receptor. In C-immune simulation, different humoral and cellular antibody titer was observed in response to the vaccine. Overall using bioinformatics, immunoinformatics, and biophysical approaches we observed that this mRNA base epitopes vaccine construct could facilitate the proof of concept for the formation of the experimental base vaccine against the Nipah virus, as the in silico predictions indicated that the vaccine is highly promising in terms of developing protective immunity. However experimental validation is required to disclose the real immune-protective efficacy of the vaccine.
Collapse
Affiliation(s)
- Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
16
|
Farzan M, Farzan M, Mirzaei Y, Aiman S, Azadegan-Dehkordi F, Bagheri N. Immunoinformatics-based multi-epitope vaccine design for the re-emerging monkeypox virus. Int Immunopharmacol 2023; 123:110725. [PMID: 37556996 DOI: 10.1016/j.intimp.2023.110725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND On May 7, 2022, WHO reported a new monkeypox case. By May 2023 over 80,000 cases had been reported worldwide outside previously endemic nations. (This primarily affected the men who have sex with men (MSM) community in rich nations). The present research aims to develop a multi-epitope vaccine for the monkeypox virus (MPXV) using structural and cell surface proteins. METHODS The first part of the research involved retrieving protein sequences. The Immune Epitope Database (IEDB) was then used to analyze the B and T lymphocyte epitopes. After analyzing the sensitizing properties, toxicity, antigenicity, and molecular binding, appropriate linkers were utilizedto connect selected epitopes to adjuvants, and the structure of the vaccine was formulated. Algorithms from the field of immunoinformatics predicted the secondary and tertiary structures of vaccines. The physical, chemical, and structural properties were refined and validated to achieve maximum stability. Molecular docking and molecular dynamic simulations were subsequently employed to assess the vaccine's efficacy. Afterward, the ability of the vaccine to interact with toll-like receptors 3 and 4 (TLR3 and TLR4) was evaluated. Finally, the optimized sequence was then introduced into the Escherichia coli (E. coli) PET30A + vector. RESULTS An immunoinformatics evaluation suggested that such a vaccine might be safe revealed that this vaccine is safe, hydrophilic, temperature- and condition-stable, and can stimulate innate immunity by binding to TLR3 and TLR4. CONCLUSION Our findings suggest that the first step in MPXV pathogenesis is structural and cell surface epitopes. In this study, the most effective and promising epitopes were selected and designed throughprecision servers. Furthermore,through the utilization of multi-epitope structures and a combination of two established adjuvants, this research has the potential to be a landmarkin developing an antiviralvaccine against MPXV. However, additional in vitro and in vivo tests are required to confirm these results.
Collapse
Affiliation(s)
- Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahan Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Nader Bagheri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
17
|
Wang Y, Yang K, Zhou H. Immunogenic proteins and potential delivery platforms for mpox virus vaccine development: A rapid review. Int J Biol Macromol 2023; 245:125515. [PMID: 37353117 PMCID: PMC10284459 DOI: 10.1016/j.ijbiomac.2023.125515] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Since May 2022, the mpox virus (MPXV) has spread worldwide and become a potential threat to global public health. Vaccines are important tools for preventing MPXV transmission and infection in the population. However, there are still no available potent and applicable vaccines specifically for MPXV. Herein, we highlight several potential vaccine targets for MPVX and emphasize potent immunogens, such as M1R, E8L, H3L, A29L, A35R, and B6R proteins. These proteins can be integrated into diverse vaccine platforms to elicit powerful B-cell and T-cell responses, thereby providing protective immunity against MPXV infection. Overall, research on the MPXV vaccine targets would provide valuable information for developing timely effective MPXV-specific vaccines.
Collapse
Affiliation(s)
- Yang Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Kaiwen Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China.
| |
Collapse
|
18
|
Abdulhameed Odhar H, Hashim AF, Humadi SS, Ahjel SW. Design and construction of multi epitope- peptide vaccine candidate for rabies virus. Bioinformation 2023; 19:167-177. [PMID: 37814687 PMCID: PMC10560302 DOI: 10.6026/97320630019167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 09/01/2023] Open
Abstract
Rabies virus is a zoonotic pathogen that causes lethal encephalitis with a case fatality rate of almost 100% in unvaccinated individuals. The currently available vaccines against rabies are composed of inactivated viral particles that only confer a short-term immune response. It is well-known that the entry of rabies virus into host cells is mediated by a trimeric glycoprotein presents on the surface of viral envelope. As the sole viral surface protein, this trimeric glycoprotein represents a promising molecular target to design new vaccines and neutralizing antibodies against rabies virus. Epitope mapping studies had identified several antigenic sites on the surface of trimeric pre-fusion glycoprotein of rabies virus. Therefore, it is of interest to screen the rabies virus glycoprotein by different web-based immuno-informatics tools to identify potential B-cells and T-cells linear epitopes. Here, we present a construct of peptide vaccine that consists of these predicted linear epitopes of rabies virus glycoprotein together with appropriate linkers and adjuvant. Various online prediction tools, molecular docking and dynamics simulation assume that the vaccine construct may be stable, safe and effective. However, validation of these in-silico results is necessary both in vitro and in vivo setting.
Collapse
Affiliation(s)
| | | | - Suhad Sami Humadi
- Department of pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
19
|
Mazumder L, Hasan MR, Fatema K, Begum S, Azad AK, Islam MA. Identification of B and T Cell Epitopes to Design an Epitope-Based Peptide Vaccine against the Cell Surface Binding Protein of Monkeypox Virus: An Immunoinformatics Study. J Immunol Res 2023; 2023:2274415. [PMID: 36874624 PMCID: PMC9977553 DOI: 10.1155/2023/2274415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/07/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Background Although the monkeypox virus-associated illness was previously confined to Africa, recently, it has started to spread across the globe and become a significant threat to human lives. Hence, this study was designed to identify the B and T cell epitopes and develop an epitope-based peptide vaccine against this virus's cell surface binding protein through an in silico approach to combat monkeypox-associated diseases. Results The analysis revealed that the cell surface binding protein of the monkeypox virus contains 30 B cell and 19 T cell epitopes within the given parameter. Among the T cell epitopes, epitope "ILFLMSQRY" was found to be one of the most potential peptide vaccine candidates. The docking analysis revealed an excellent binding affinity of this epitope with the human receptor HLA-B∗15:01 with a very low binding energy (-7.5 kcal/mol). Conclusion The outcome of this research will aid the development of a T cell epitope-based peptide vaccine, and the discovered B and T cell epitopes will facilitate the creation of other epitope and multi-epitope-based vaccines in the future. This research will also serve as a basis for further in vitro and in vivo analysis to develop a vaccine that is effective against the monkeypox virus.
Collapse
Affiliation(s)
- Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Md. Rakibul Hasan
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Kanij Fatema
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Shamima Begum
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Abul Kalam Azad
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | | |
Collapse
|
20
|
Umitaibatin R, Harisna AH, Jauhar MM, Syaifie PH, Arda AG, Nugroho DW, Ramadhan D, Mardliyati E, Shalannanda W, Anshori I. Immunoinformatics Study: Multi-Epitope Based Vaccine Design from SARS-CoV-2 Spike Glycoprotein. Vaccines (Basel) 2023; 11:vaccines11020399. [PMID: 36851275 PMCID: PMC9964839 DOI: 10.3390/vaccines11020399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
The coronavirus disease 2019 outbreak has become a huge challenge in the human sector for the past two years. The coronavirus is capable of mutating at a higher rate than other viruses. Thus, an approach for creating an effective vaccine is still needed to induce antibodies against multiple variants with lower side effects. Currently, there is a lack of research on designing a multiepitope of the COVID-19 spike protein for the Indonesian population with comprehensive immunoinformatic analysis. Therefore, this study aimed to design a multiepitope-based vaccine for the Indonesian population using an immunoinformatic approach. This study was conducted using the SARS-CoV-2 spike glycoprotein sequences from Indonesia that were retrieved from the GISAID database. Three SARS-CoV-2 sequences, with IDs of EIJK-61453, UGM0002, and B.1.1.7 were selected. The CD8+ cytotoxic T-cell lymphocyte (CTL) epitope, CD4+ helper T lymphocyte (HTL) epitope, B-cell epitope, and IFN-γ production were predicted. After modeling the vaccines, molecular docking, molecular dynamics, in silico immune simulations, and plasmid vector design were performed. The designed vaccine is antigenic, non-allergenic, non-toxic, capable of inducing IFN-γ with a population reach of 86.29% in Indonesia, and has good stability during molecular dynamics and immune simulation. Hence, this vaccine model is recommended to be investigated for further study.
Collapse
Affiliation(s)
- Ramadhita Umitaibatin
- Lab-on-Chip Group, Department of Biomedical Engineering, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - Azza Hanif Harisna
- Nano Center Indonesia, Jl. Raya Puspiptek, South Tangerang 15314, Indonesia
| | | | - Putri Hawa Syaifie
- Nano Center Indonesia, Jl. Raya Puspiptek, South Tangerang 15314, Indonesia
| | | | - Dwi Wahyu Nugroho
- Nano Center Indonesia, Jl. Raya Puspiptek, South Tangerang 15314, Indonesia
| | - Donny Ramadhan
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Etik Mardliyati
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Wervyan Shalannanda
- Department of Telecommunication Engineering, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - Isa Anshori
- Lab-on-Chip Group, Department of Biomedical Engineering, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung 40132, Indonesia
- Correspondence:
| |
Collapse
|
21
|
Jiang F, Liu Y, Xue Y, Cheng P, Wang J, Lian J, Gong W. Developing a multiepitope vaccine for the prevention of SARS-CoV-2 and monkeypox virus co-infection: A reverse vaccinology analysis. Int Immunopharmacol 2023; 115:109728. [PMID: 36652758 PMCID: PMC9832108 DOI: 10.1016/j.intimp.2023.109728] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and monkeypox virus (MPXV) severely threaten human health; however, currently, no vaccine can prevent a co-infection with both viruses. METHODS Five antigens were selected to predict dominant T and B cell epitopes screened for immunogenicity, antigenicity, toxicity, and sensitization. After screening, all antigens joined in the construction of a novel multiepitope vaccine. The physicochemical and immunological characteristics, and secondary and tertiary structures of the vaccine were predicted and analyzed using bio- and immunoinformatics. Finally, codon optimization and cloning in-silico were performed. RESULTS A new multiepitope vaccine, named S7M8, was constructed based on four helper T lymphocyte (HTL) epitopes, six cytotoxic T lymphocyte (CTL) epitopes, five B cell epitopes, as well as Toll-like receptor (TLR) agonists. The antigenicity and immunogenicity scores of the S7M8 vaccine were 0.907374 and 0.6552, respectively. The S7M8 vaccine was comprised of 26.96% α-helices, the optimized Z-value of the tertiary structure was -5.92, and the favored area after majorization in the Ramachandran plot was 84.54%. Molecular docking showed that the S7M8 vaccine could tightly bind to TLR2 (-1100.6 kcal/mol) and TLR4 (-950.3 kcal/mol). In addition, the immune stimulation prediction indicated that the S7M8 vaccine could activate T and B lymphocytes to produce high levels of Th1 cytokines and antibodies. CONCLUSION S7M8 is a promising biomarker with good antigenicity, immunogenicity, non-toxicity, and non-sensitization. The S7M8 vaccine can trigger significantly high levels of Th1 cytokines and antibodies and may be a potentially powerful tool in preventing SARS-CoV-2 and MPXV.
Collapse
Affiliation(s)
- Fan Jiang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China; The Second Brigade of Cadet, Basic Medical Science Academy of Air Force Medical University, Xi'an, China; Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yinping Liu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
22
|
Waqas M, Aziz S, Liò P, Khan Y, Ali A, Iqbal A, Khan F, Almajhdi FN. Immunoinformatics design of multivalent epitope vaccine against monkeypox virus and its variants using membrane-bound, enveloped, and extracellular proteins as targets. Front Immunol 2023; 14:1091941. [PMID: 36776835 PMCID: PMC9908764 DOI: 10.3389/fimmu.2023.1091941] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The current monkeypox (MPX) outbreak, caused by the monkeypox virus (MPXV), has turned into a global concern, with over 59,000 infection cases and 23 deaths worldwide. Objectives Herein, we aimed to exploit robust immunoinformatics approach, targeting membrane-bound, enveloped, and extracellular proteins of MPXV to formulate a chimeric antigen. Such a strategy could similarly be applied for identifying immunodominant epitopes and designing multi-epitope vaccine ensembles in other pathogens responsible for chronic pathologies that are difficult to intervene against. Methods A reverse vaccinology pipeline was used to select 11 potential vaccine candidates, which were screened and mapped to predict immunodominant B-cell and T-cell epitopes. The finalized epitopes were merged with the aid of suitable linkers, an adjuvant (Resuscitation-promoting factor), a PADRE sequence (13 aa), and an HIV TAT sequence (11 aa) to formulate a multivalent epitope vaccine. Bioinformatics tools were employed to carry out codon adaptation and computational cloning. The tertiary structure of the chimeric vaccine construct was modeled via I-TASSER, and its interaction with Toll-like receptor 4 (TLR4) was evaluated using molecular docking and molecular dynamics simulation. C-ImmSim server was implemented to examine the immune response against the designed multi-epitope antigen. Results and discussion The designed chimeric vaccine construct included 21 immunodominant epitopes (six B-cell, eight cytotoxic T lymphocyte, and seven helper T-lymphocyte) and is predicted non-allergen, antigenic, soluble, with suitable physicochemical features, that can promote cross-protection among the MPXV strains. The selected epitopes indicated a wide global population coverage (93.62%). Most finalized epitopes have 70%-100% sequence similarity with the experimentally validated immune epitopes of the vaccinia virus, which can be helpful in the speedy progression of vaccine design. Lastly, molecular docking and molecular dynamics simulation computed stable and energetically favourable interaction between the putative antigen and TLR4. Conclusion Our results show that the multi-epitope vaccine might elicit cellular and humoral immune responses and could be a potential vaccine candidate against the MPXV infection. Further experimental testing of the proposed vaccine is warranted to validate its safety and efficacy profile.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
| | - Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge, Cambridge, United Kingdom
| | - Yumna Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
| | - Amjad Ali
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Aqib Iqbal
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Faizullah Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz, Nizwa, Oman
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Fahad Nasser Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Chandran D, Nandanagopal V, Gopan M, Megha K, Hari Sankar C, Muhammad Aslam M, Savanth VV, Pran M, Nainu F, Yatoo MI, Ebad Ur Rehman M, Chopra H, Emran TB, Dey A, Sharma AK, A. Saied A, Dhama K. Major Advances in Monkeypox Vaccine Research and Development – An Update. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022; 16:3083-3095. [DOI: 10.22207/jpam.16.spl1.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Monkeypox (MPX) is a zoonotic disease that is endemic to the western and central regions of Africa and it is caused by monkeypox virus (MPXV), which is classified as a member of the Poxviridae family, specifically the Chordopoxvirinae subfamily, and the Orthopoxvirus genus. The current multiregional outbreak of MPX, which started in May of 2022, has since swiftly spread across the globe and thus has been declared a global public health emergency by the World Health Organization (WHO). Protective immunity against MPXV can be achieved by administering a smallpox vaccination, as the two viruses share antigenic properties. Although smallpox was declared eradicated in 1980, the vaccine campaign was halted the following year, leaving the population with significantly less immunity than it had before. The potential for human-to-human transmission of MPXV has grown as a result. Due to the lack of a particular treatment for MPX infection, anti-viral medications initially designed for the smallpox virus are being employed. However, the prognosis for MPX may vary depending on factors like immunization history, pre-existing illnesses, and comorbidities, even though the majority of persons who develop MPX have a mild, self-limiting illness. Vaccines and antiviral drugs are being researched as potential responses to the latest 2022 MPX epidemic. The first-generation smallpox vaccinations maintained in national stockpiles of several countries are not recommended due to not meeting the current safety and manufacturing criteria, as stated by the WHO. Newer, safer (second- and third-generation) smallpox vaccines, such as JYNNEOSTM, which has been licensed for the prevention of MPX, are indicated as potentially useful in the interim guideline. Studies on vaccines and antiviral drugs are still being investigated as possible remedies to the recent MPX outbreak. This mini-review article serves as a retrospective look at the evolution of smallpox vaccines from their inception in the 1700s to the current trends up to the end of year 2022, specifically for developing monkeypox vaccines.
Collapse
|
24
|
Zardi EM, Chello C. Human Monkeypox-A Global Public Health Emergency. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192416781. [PMID: 36554659 PMCID: PMC9779584 DOI: 10.3390/ijerph192416781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/02/2023]
Abstract
Monkeypox, a viral zoonosis caused by an Orthopoxvirus, is clinically characterized by fever, headache, lymphadenopathy, myalgia, rash and burdened by some complications that can be severe and life threatening. Monkeypox, endemic in some central and west African countries, in tropical areas near equator, rose to the headlines following its recent outbreak in non-endemic countries of Europe and the USA. Thus, the World Health Organization, worried about the growing dimension of the problem, declared monkeypox a global public health emergency. Now, after months of careful observation, the western scientific research is drawing conclusion that African endemic countries represent a reserve pool able to feed, through travelers and sexual networks, the outbreak in non-endemic countries in which high-risk communities such as gay and bisexual men are the most affected. Prevention through vaccination and early diagnosis are the core to breaking the chain of diffusion of this epidemic. Particular attention should be paid to avoid the spread from endemic countries, also implementing the economic investments in their public health system. Information campaigns and assistance to high-risk classes in non-endemic countries are important priorities, however, assuming that specific treatments for this disease are still tentative.
Collapse
Affiliation(s)
- Enrico Maria Zardi
- Internistic Ultrasound Service, Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Rome, Italy
| | - Camilla Chello
- PhD Course, Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|