1
|
Castillo-Castañeda SM, Rivera-Espinosa L, Gómez-Garduño J, Cordova-Gallardo J, Chávez-Pacheco JL, Méndez-Sánchez N. Identification and quantification of the molecular species of bilirubin BDG, BMG and UCB by LC‒MS/MS in hyperbilirubinemic human serum. PLoS One 2024; 19:e0313044. [PMID: 39561208 PMCID: PMC11575834 DOI: 10.1371/journal.pone.0313044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND AND AIMS Unconjugated bilirubin (UCB) is a byproduct of the heme group that indicates irregularities in the metabolism of several important biological molecules, such as hemoglobin. UCB is processed by hepatic UGT1A1, which catalyzes its conjugation to the metabolites bilirubin diglucuronide (BDG) and bilirubin monoglucuronide (BMG). The serum concentrations of BDG and BMG may indicate liver injury or dysfunction. The aim of this study was to standardize and validate a method for the identification and simultaneous quantification of BMG, BDG and UCB by LC‒MS/MS. METHODS Liquid‒liquid extraction allows the separation of UCB, BMG and BDG from the serum of healthy subjects or patients with liver injury. Detection and quantification were performed using an LC‒MS/MS method. Compound separation was achieved with a BEH-C18 column at 40°C. The mobile phase was prepared with 5 mM ammonium acetate (pH 6) and acetonitrile, and a flow gradient was applied. RESULTS This is the first study to directly quantify BMG and UCB levels in human serum; no postcalculations or correction factors are needed. However, BDG quantification requires calculations and a correction factor. We identified the molecular species with ionic transitions m/z1+ 585.4 > 299.2 for UCB, 761.3 > 475.3 for BMG, 937.3 > 299.5 for BDG and mesobilirubin 589.4 > 301.3 (IS). CONCLUSION The procedures used in this study allowed the simultaneous identification and quantification of the molecular species of bilirubin, BDG, BMG and UCB. Analysis of the serum levels in patients with hyperbilirubinemia revealed that patients with acute-on-chronic liver failure had elevated levels of these species.
Collapse
Affiliation(s)
- Stephany M. Castillo-Castañeda
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Medical, Dental and Health Sciences Master and Doctorate Program, National Autonomous University of Mexico, Mexico City, Mexico
| | | | | | - Jacqueline Cordova-Gallardo
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Hepatology, General Surgery Department, General Hospital Dr. Manuel Gea González, Mexico City, Mexico
| | | | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
2
|
Baxter RC. Endocrine and cellular physiology and pathology of the insulin-like growth factor acid-labile subunit. Nat Rev Endocrinol 2024; 20:414-425. [PMID: 38514815 DOI: 10.1038/s41574-024-00970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
The acid-labile subunit (ALS) of the insulin-like growth factor (IGF) binding protein (IGFBP) complex, encoded in humans by IGFALS, has a vital role in regulating the endocrine transport and bioavailability of IGF-1 and IGF-2. Accordingly, ALS has a considerable influence on postnatal growth and metabolism. ALS is a leucine-rich glycoprotein that forms high-affinity ternary complexes with IGFBP-3 or IGFBP-5 when they are occupied by either IGF-1 or IGF-2. These complexes constitute a stable reservoir of circulating IGFs, blocking the potentially hypoglycaemic activity of unbound IGFs. ALS is primarily synthesized by hepatocytes and its expression is lower in non-hepatic tissues. ALS synthesis is strongly induced by growth hormone and suppressed by IL-1β, thus potentially serving as a marker of growth hormone secretion and/or activity and of inflammation. IGFALS mutations in humans and Igfals deletion in mice cause modest growth retardation and pubertal delay, accompanied by decreased osteogenesis and enhanced adipogenesis. In hepatocellular carcinoma, IGFALS is described as a tumour suppressor; however, its contribution to other cancers is not well delineated. This Review addresses the endocrine physiology and pathology of ALS, discusses the latest cell and proteomic studies that suggest emerging cellular roles for ALS and outlines its involvement in other disease states.
Collapse
Affiliation(s)
- Robert C Baxter
- University of Sydney, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| |
Collapse
|
3
|
Pérez Compte D, Etourneau L, Hesse AM, Kraut A, Barthelon J, Sturm N, Borges H, Biennier S, Courçon M, de Saint Loup M, Mignot V, Costentin C, Burger T, Couté Y, Bruley C, Decaens T, Jaquinod M, Boursier J, Brun V. Plasma ALS and Gal-3BP differentiate early from advanced liver fibrosis in MASLD patients. Biomark Res 2024; 12:44. [PMID: 38679739 PMCID: PMC11057169 DOI: 10.1186/s40364-024-00583-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is estimated to affect 30% of the world's population, and its prevalence is increasing in line with obesity. Liver fibrosis is closely related to mortality, making it the most important clinical parameter for MASLD. It is currently assessed by liver biopsy - an invasive procedure that has some limitations. There is thus an urgent need for a reliable non-invasive means to diagnose earlier MASLD stages. METHODS A discovery study was performed on 158 plasma samples from histologically-characterised MASLD patients using mass spectrometry (MS)-based quantitative proteomics. Differentially abundant proteins were selected for verification by ELISA in the same cohort. They were subsequently validated in an independent MASLD cohort (n = 200). RESULTS From the 72 proteins differentially abundant between patients with early (F0-2) and advanced fibrosis (F3-4), we selected Insulin-like growth factor-binding protein complex acid labile subunit (ALS) and Galectin-3-binding protein (Gal-3BP) for further study. In our validation cohort, AUROCs with 95% CIs of 0.744 [0.673 - 0.816] and 0.735 [0.661 - 0.81] were obtained for ALS and Gal-3BP, respectively. Combining ALS and Gal-3BP improved the assessment of advanced liver fibrosis, giving an AUROC of 0.796 [0.731. 0.862]. The {ALS; Gal-3BP} model surpassed classic fibrosis panels in predicting advanced liver fibrosis. CONCLUSIONS Further investigations with complementary cohorts will be needed to confirm the usefulness of ALS and Gal-3BP individually and in combination with other biomarkers for diagnosis of liver fibrosis. With the availability of ELISA assays, these findings could be rapidly clinically translated, providing direct benefits for patients.
Collapse
Affiliation(s)
- David Pérez Compte
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Lucas Etourneau
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Anne-Marie Hesse
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Alexandra Kraut
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Justine Barthelon
- Université Grenoble Alpes, Clinique Universitaire d'Hépato-Gastroentérologie, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Nathalie Sturm
- Université Grenoble Alpes, Clinique Universitaire d'Hépato-Gastroentérologie, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Hélène Borges
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Salomé Biennier
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Marie Courçon
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Marc de Saint Loup
- Hepato-Gastroenterology Department, University Hospital, Angers, France
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Victoria Mignot
- Université Grenoble Alpes, Clinique Universitaire d'Hépato-Gastroentérologie, CHU Grenoble Alpes, 38000, Grenoble, France
- Univ. Grenoble Alpes, Institute for Advanced Biosciences-INSERM U1209/ CNRS UMR 5309, Grenoble, France
| | - Charlotte Costentin
- Université Grenoble Alpes, Clinique Universitaire d'Hépato-Gastroentérologie, CHU Grenoble Alpes, 38000, Grenoble, France
- Univ. Grenoble Alpes, Institute for Advanced Biosciences-INSERM U1209/ CNRS UMR 5309, Grenoble, France
| | - Thomas Burger
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Christophe Bruley
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Thomas Decaens
- Université Grenoble Alpes, Clinique Universitaire d'Hépato-Gastroentérologie, CHU Grenoble Alpes, 38000, Grenoble, France
- Univ. Grenoble Alpes, Institute for Advanced Biosciences-INSERM U1209/ CNRS UMR 5309, Grenoble, France
| | - Michel Jaquinod
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France.
| | - Jérôme Boursier
- Hepato-Gastroenterology Department, University Hospital, Angers, France
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Virginie Brun
- Univ. Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, FR2048 ProFI, EDyP team, 17 Avenue des Martyrs, 38000, Grenoble, France.
- Univ. Grenoble Alpes, CEA, Leti, 38000, Grenoble, France.
| |
Collapse
|
4
|
Xia N, Ding Z, Dong M, Li S, Liu J, Xue H, Wang Z, Lu J, Chen X. Protective Effects of Lycium ruthenicum Murray against Acute Alcoholic Liver Disease in Mice via the Nrf2/HO-1/NF-κB Signaling Pathway. Pharmaceuticals (Basel) 2024; 17:497. [PMID: 38675458 PMCID: PMC11054480 DOI: 10.3390/ph17040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Acute alcoholic liver disease (ALD) resulting from short-term heavy alcohol consumption has become a global health concern. Moreover, anthocyanins have attracted much attention for their ability to prevent oxidation and inflammation. The present work evaluates the protective effects of Lycium ruthenicum Murray (LRM) against ALD and explores the possible underlying mechanism involved. The total anthocyanin content in LRM was 43.64 ± 9.28 Pt g/100 g dry weight. Mice were orally administered 50, 125, or 375 mg LRM/kg body weight (BW) for 21 days. On days 18-21, mice were orally administered 15 mL of ethanol/kg BW. Markers of liver damage, oxidative stress, and inflammation were examined. Furthermore, the modulatory effect of LRM on Nrf2/HO-1/NF-κB pathway molecules was evaluated through quantitative reverse transcription polymerase chain reaction (RT‒qPCR) and immunohistochemistry analyses. The difference between the groups indicated that LRM improved liver histopathology and the liver index, decreased aspartate transaminase, alanine transaminase, malondialdehyde, reactive oxygen species, IL-6, TNF-α, and IL-1β expression, but elevated superoxide dismutase, catalase, and glutathione-s-transferase levels. Moreover, LRM upregulated Nrf2 and Ho-1 but downregulated Nf-κb and Tnf-α genes at the transcript level. In summary, LRM alleviated ethanol-induced ALD in mice by reducing oxidative damage and associated inflammatory responses. LRM protects against ALD by reducing damage factors and enhancing defense factors, especially via the Nrf2/HO-1/NF-κB pathway. Thus, LRM has application potential in ALD prophylaxis and treatment.
Collapse
Affiliation(s)
- Niantong Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Zimian Ding
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| | - Mingran Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| | - Shuyang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| | - Jia Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Hongwei Xue
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Juan Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| | - Xi Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (Z.D.); (M.D.); (S.L.); (J.L.); (H.X.)
| |
Collapse
|
5
|
Mischitelli M, Spagnoli A, Abbatecola A, Codazzo C, Giacomelli M, Parisse S, Mancina RM, Rotondo C, Attilia F, Ginanni Corradini S, Ferri F. New Diagnostic and Prognostic Models for the Development of Alcoholic Cirrhosis Based on Genetic Predisposition and Alcohol History. Biomedicines 2023; 11:2132. [PMID: 37626629 PMCID: PMC10452718 DOI: 10.3390/biomedicines11082132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Liver cirrhosis development is a multifactorial process resulting from a combination of environmental and genetic factors. The aim of the study was to develop accurate non-invasive diagnostic and prognostic models for alcoholic cirrhosis. Consecutive subjects with at-risk alcohol intake were retrospectively enrolled (110 cirrhotic patients and 411 non-cirrhotics). At enrollment, the data about lifetime drinking history were collected and all patients were tested for Patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409, Transmembrane 6 Superfamily 2 (TM6SF2) rs58542926, and hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) rs72613567 variants. In cross-sectional analyses, models for the diagnosis of cirrhosis were developed using multivariate logistic regression. A predictive score for cirrhosis development over 24 years was built by evaluating time-dependent AUC curves. The best diagnostic accuracy was demonstrated by the model, which also includes daily alcohol consumption, duration of hazardous alcohol use, and genetic variants, with AUCs of 0.951 (95% CI 0.925-0.977) and 0.887 (95% CI 0.925-0.977) for cirrhosis and compensated cirrhosis, respectively. The predictive model for future cirrhosis development (AUC of 0.836 95% CI: 0.769-0.904) accounted for age at onset of at-risk alcohol consumption and the number of PNPLA3 and HSD17B13 variant alleles. We have developed accurate genetic and alcohol consumption models for the diagnosis of alcoholic cirrhosis and the prediction of its future risk.
Collapse
Affiliation(s)
- Monica Mischitelli
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, Viale dell’Università 37, 00185 Rome, Italy; (M.M.); (A.A.); (M.G.); (S.P.); (F.F.)
| | - Alessandra Spagnoli
- Section of BioMedical Statistics, Department of Public Health and Infectious Disease, Sapienza University, 00185 Rome, Italy;
| | - Aurelio Abbatecola
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, Viale dell’Università 37, 00185 Rome, Italy; (M.M.); (A.A.); (M.G.); (S.P.); (F.F.)
| | - Claudia Codazzo
- Department of Mental Health ASL RM1, UOSD CRARL, Sapienza University, 00186 Rome, Italy; (C.C.); (C.R.); (F.A.)
| | - Marta Giacomelli
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, Viale dell’Università 37, 00185 Rome, Italy; (M.M.); (A.A.); (M.G.); (S.P.); (F.F.)
| | - Simona Parisse
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, Viale dell’Università 37, 00185 Rome, Italy; (M.M.); (A.A.); (M.G.); (S.P.); (F.F.)
| | - Rosellina Margherita Mancina
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Claudia Rotondo
- Department of Mental Health ASL RM1, UOSD CRARL, Sapienza University, 00186 Rome, Italy; (C.C.); (C.R.); (F.A.)
| | - Fabio Attilia
- Department of Mental Health ASL RM1, UOSD CRARL, Sapienza University, 00186 Rome, Italy; (C.C.); (C.R.); (F.A.)
| | - Stefano Ginanni Corradini
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, Viale dell’Università 37, 00185 Rome, Italy; (M.M.); (A.A.); (M.G.); (S.P.); (F.F.)
| | - Flaminia Ferri
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, Viale dell’Università 37, 00185 Rome, Italy; (M.M.); (A.A.); (M.G.); (S.P.); (F.F.)
| |
Collapse
|