1
|
Jin W, Liu J, Yang T, Feng Z, Yang J, Cao L, Wu C, Zuo Y, Yu L. Transcriptome Analyses Reveal the Important miRNAs Involved in Immune Response of Gastric Cancer. IET Syst Biol 2025; 19:e70014. [PMID: 40186852 PMCID: PMC11972004 DOI: 10.1049/syb2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/12/2024] [Accepted: 03/23/2025] [Indexed: 04/07/2025] Open
Abstract
MicroRNAs (miRNAs) are crucial factors in gene regulation, and their dysregulation plays important roles in the immunity of gastric cancer (GC). However, finding specific and effective miRNA markers is still a great challenge for GC immunotherapy. In this study, we computed and analysed miRNA-seq, RNA-seq and clinical data of GC patients from the TCGA database. With the comparison of tumour and normal tissues in GC, we identified 2056 upregulated and 2311 downregulated protein-coding genes. Based on the miRNet database, more than 2600 miRNAs interact with these genes. Several key miRNAs, including hsa-mir-34a, hsa-mir-182 and hsa-mir-23b, were identified to potentially play important regulatory roles in the expression of most upregulated and downregulated genes in GC. Based on bioinformation approaches, the expressions of hsa-mir-34a and hsa-mir-182 were closely linked to the tumour stage, and high expression of hsa-mir-23b was correlated with poor survival in GC. Moreover, these three miRNAs are involved in immune cell infiltration (such as activated memory CD4 T cells and resting mast cells), particularly hsa-mir-182 and hsa-mir-23b. GSEA suggested that the changes in their expression may possibly activate/inhibit immune-related signal pathways, such as chemokine signalling pathway and CXCR4 pathway. These results will provide possible miRNA markers or targets for combined immunotherapy of GC.
Collapse
Affiliation(s)
- Wen Jin
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
| | - Jianli Liu
- School of Water Resource and Environment EngineeringChina University of GeosciencesBeijingChina
| | - Tingyu Yang
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
| | - Zongqi Feng
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
| | - Jie Yang
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
| | - Lei Cao
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
| | - Chengyan Wu
- Baotou Teacher's CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Yongchun Zuo
- College of Life SciencesInner Mongolia UniversityHohhotChina
- Digital CollegeInner Mongolia Intelligent Union Big Data AcademyHohhotChina
- Inner Mongolia International Mongolian HospitalHohhotChina
| | - Lan Yu
- Clinical Medical Research Center/Inner Mongolia Key Laboratory of Gene Regulation of the Metabolic DiseaseInner Mongolia People's HospitalHohhotChina
- Department of Endocrine and Metabolic DiseasesInner Mongolia People's HospitalHohhotChina
| |
Collapse
|
2
|
Wang C, Wu M, Wang Z, Wu X, Yuan H, Jiang S, Li G, Lan R, Wang Q, Zhang G, Lv Y, Shi H. Identification of miRNA-TF Regulatory Pathways Related to Diseases from a Neuroendocrine-Immune Perspective. Cell Mol Neurobiol 2024; 45:2. [PMID: 39630316 PMCID: PMC11618161 DOI: 10.1007/s10571-024-01510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/22/2024] [Indexed: 12/08/2024]
Abstract
The neuroendocrine-immune (NEI) network is fundamental for maintaining body's homeostasis and health. While the roles of microRNAs (miRNAs) and transcription factors (TFs) in disease processes are well-established, their synergistic regulation within the NEI network has yet to be elucidated. In this study, we constructed a background NEI-related miRNA-TF regulatory network (NEI-miRTF-N) by integrating NEI signaling molecules (including miRNAs, genes, and TFs) and identifying miRNA-TF feed-forward loops. Our analysis reveals that the number of immune signaling molecules is the highest and suggests potential directions for signal transduction, primarily from the nervous system to both the endocrine and immune systems, as well as from the endocrine system to the immune system. Furthermore, disease-specific NEI-miRTF-Ns for depression, Alzheimer's disease (AD) and dilated cardiomyopathy (DCM) were constructed based on the known disease molecules and significantly differentially expressed (SDE) molecules. Additionally, we proposed a novel method using depth-first-search algorithm for identifying significantly dysregulated NEI-related miRNA-TF regulatory pathways (NEI-miRTF-Ps) and verified their reliability from multiple perspectives. Our study provides an effective approach for identifying disease-specific NEI-miRTF-Ps and offers new insights into the synergistic regulation of miRNAs and TFs within the NEI network. Our findings provide information for new therapeutic strategies targeting these regulatory pathways.
Collapse
Affiliation(s)
- Chengyi Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Meitao Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ziyang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaoliang Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hao Yuan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuo Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Gen Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Rifang Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Qiuping Wang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangde Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yingli Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Hongbo Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Zou H, Liu C, Ruan Y, Fang L, Wu T, Han S, Dang T, Meng H, Zhang Y. Colorectal medullary carcinoma: a pathological subtype with intense immune response and potential to benefit from immune checkpoint inhibitors. Expert Rev Clin Immunol 2024; 20:997-1008. [PMID: 38459764 DOI: 10.1080/1744666x.2024.2328746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Different pathological types of colorectal cancer have distinguished immune landscape, and the efficacy of immunotherapy will be completely different. Colorectal medullary carcinoma, accounting for 2.2-3.2%, is characterized by massive lymphocyte infiltration. However, the attention to the immune characteristics of colorectal medullary carcinoma is insufficient. AREA COVERED We searched the literature about colorectal medullary carcinoma on PubMed through November 2023to investigate the hallmarks of colorectal medullary carcinoma's immune landscape, compare medullary carcinoma originating from different organs and provide theoretical evidence for precise treatment, including applying immunotherapy and BRAF inhibitors. EXPERT OPINION Colorectal medullary carcinoma is a pathological subtype with intense immune response, with six immune characteristics and has the potential to benefit from immunotherapy. Mismatch repair deficiency, ARID1A missing and BRAF V600E mutation often occurs. IFN-γ pathway is activated and PD-L1 expression is increased. Abundant lymphocyte infiltration performs tumor killing function. In addition, BRAF mutation plays an important role in the occurrence and development, and we can consider the combination of BRAF inhibitors and immunotherapy in patients with BRAF mutant. The exploration of colorectal medullary carcinoma will arouse researchers' attention to the correlation between pathological subtypes and immune response, and promote the process of precise immunotherapy.
Collapse
Affiliation(s)
- Haoyi Zou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Fang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University in Shandong, Qingdao, China
| | - Tong Wu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjiao Dang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
4
|
Ari Yuka S, Yilmaz A. Decoding dynamic miRNA:ceRNA interactions unveils therapeutic insights and targets across predominant cancer landscapes. BioData Min 2024; 17:11. [PMID: 38627780 PMCID: PMC11022475 DOI: 10.1186/s13040-024-00362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Competing endogenous RNAs play key roles in cellular molecular mechanisms through cross-talk in post-transcriptional interactions. Studies on ceRNA cross-talk, which is particularly dependent on the abundance of free transcripts, generally involve large- and small-scale studies involving the integration of transcriptomic data from tissues and correlation analyses. This abundance-dependent nature of ceRNA interactions suggests that tissue- and condition-specific ceRNA dynamics may fluctuate. However, there are no comprehensive studies investigating the ceRNA interactions in normal tissue, ceRNAs that are lost and/or appear in cancerous tissues or their interactions. In this study, we comprehensively analyzed the tumor-specific ceRNA fluctuations observed in the three highest-incidence cancers, LUAD, PRAD, and BRCA, compared to healthy lung, prostate, and breast tissues, respectively. Our observations pertaining to tumor-specific competing endogenous RNA (ceRNA) interactions revealed that, in the cases of lung adenocarcinoma (LUAD), prostate adenocarcinoma (PRAD), and breast invasive carcinoma (BRCA), 3,204, 1,233, and 406 ceRNAs, respectively, engage in post-transcriptional intercommunication within tumor tissues, in contrast to their absence in corresponding healthy samples. We also found that 90 ceRNAs are shared by the three cancer types and that these ceRNAs participate in ceRNA interactions in tumor tissues compared to those in normal tissues. Among the 90 ceRNAs that directly interact with miRNAs, we uncovered a core network of 165 miRNAs and 63 ceRNAs that should be considered in RNA-targeted and RNA-mediated approaches in future studies and could be used in these three aggressive cancer types. More specifically, in this core interaction network, ceRNAs such as GALNT7, KLF9, and DAB2 and miRNAs like miR-106a/b-5p, miR-20a-5p, and miR-519d-3p may have potential as common targets in the three critical cancers. In contrast to conventional methods that construct ceRNA networks using differentially expressed genes compared to normal tissues, our proposed approach identifies ceRNA players by considering their context within the ceRNA:miRNA interactions. Our results have the potential to reveal distinct and common ceRNA interactions in cancer types and to pinpoint critical RNAs, thereby paving the way for RNA-based strategies in the battle against cancer.
Collapse
Affiliation(s)
- Selcen Ari Yuka
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Yildiz Technical University, Istanbul, 34220, Turkey.
| | - Alper Yilmaz
- Department of Bioengineering, Yildiz Technical University, Istanbul, 34220, Turkey
| |
Collapse
|
5
|
Zhang L, Feng Q, Wang J, Tan Z, Li Q, Ge M. Molecular basis and targeted therapy in thyroid cancer: Progress and opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:188928. [PMID: 37257629 DOI: 10.1016/j.bbcan.2023.188928] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Thyroid cancer (TC) is the most prevalent endocrine malignant tumor. Surgery, chemotherapy, radiotherapy, and radioactive iodine (RAI) therapy are the standard TC treatment modalities. However, recurrence or tumor metastasis remains the main challenge in the management of anaplastic thyroid cancer (ATC) and radioiodine (RAI) radioactive iodine-refractory differentiated thyroid cancer (RR-DTC). Several multi-tyrosine kinase inhibitors (MKIs), or immune checkpoint inhibitors in combination with MKIs, have emerged as novel therapies for controlling the progression of DTC, medullary thyroid cancer (MTC), and ATC. Here, we discuss and summarize the molecular basis of TC, review molecularly targeted therapeutic drugs in clinical research, and explore potentially novel molecular therapeutic targets. We focused on the evaluation of current and recently emerging tyrosine kinase inhibitors approved for systemic therapy for TC, including lenvatinib, sorafenib and cabozantinib in DTC, vandetanib, cabozantinib, and RET-specific inhibitor (selpercatinib and pralsetinib) in MTC, combination dabrafenib with trametinib in ATC. In addition, we also discuss promising treatments that are in clinical trials and may be incorporated into clinical practice in the future, briefly describe the resistance mechanisms of targeted therapies, emphasizing that personalized medicine is critical to the design of second-line therapies.
Collapse
Affiliation(s)
- Lizhuo Zhang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| | - Qingqing Feng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| | - Jiafeng Wang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China
| | - Zhuo Tan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China.
| | - Qinglin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|