1
|
Pan J, Chen S, Chen X, Song Y, Cheng H. Histone Modifications and DNA Methylation in Psoriasis: A Cellular Perspective. Clin Rev Allergy Immunol 2025; 68:6. [PMID: 39871086 DOI: 10.1007/s12016-024-09014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 01/29/2025]
Abstract
In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis. A deeper understanding of these epigenetic mechanisms not only helps unveil the molecular mechanisms underlying the initiation and progression of psoriasis but may also provide new insights into diagnostic and therapeutic strategies. Given the unique roles and significant contributions of various cell types involved in the process of psoriasis, a thorough analysis of specific epigenetic patterns in different cell types becomes a key entry point for elucidating the mechanisms of disease development. Although epigenetic modifications encompass multiple complex layers, this review will focus on histone modifications and DNA methylation, describing how they function in different cell types and subsequently impact the pathophysiological processes of psoriasis. Finally, we will summarize the current problems in research concerning histone modifications and DNA methylation in psoriasis and discuss the clinical application prospects and challenges of targeting epigenetic modifications as therapeutic strategies for psoriasis.
Collapse
Affiliation(s)
- Jing Pan
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Siji Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xianzhen Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Long Q, Ma T, Wang Y, Chen S, Tang S, Wang T, Zhou Y, Xu K, Wan P, Cao Y. Orientin alleviates the inflammatory response in psoriasis like dermatitis in BALB/c mice by inhibiting the MAPK signaling pathway. Int Immunopharmacol 2024; 134:112261. [PMID: 38761783 DOI: 10.1016/j.intimp.2024.112261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Psoriasis, a chronic inflammatory condition of the skin, is characterized by an atypical proliferation of epidermal keratinocytes and immune cell infiltration. Orientin is a flavonoid monomer with potent anti-inflammatory activities. However, the therapeutic effects of orientin on psoriasis and the underlying mechanisms have not been elucidated. OBJECTIVE To investigate the therapeutic effect of orientin on psoriasis and the underlying mechanisms using network pharmacology and experimental studies. METHODS A psoriasis-like mouse model was established using imiquimod (IMQ). Lipopolysaccharide (LPS) was used to stimulate the RAW264.7 and HaCaT cells in vitro. The therapeutic effects of orientin and the underlying mechanism were analyzed using histopathological, immunohistochemical, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, flow cytometry, and western blotting analyses. RESULTS Orientin ameliorated skin lesions and suppressed keratinocyte proliferation and immune cell infiltration in the IMQ-induced psoriasis-like mouse model. Additionally, orientin inhibited the secretion of the pro-inflammatory factors interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, IL-8, IL-17, and IL-23 in the psoriasis-like mouse model and LPS-induced RAW264.7 and HaCaT cells. Furthermore, orientin mitigated the LPS-induced upregulation of reactive oxygen species and downregulation of IL-10 and glutathione levels. Orientin alleviated inflammation by downregulating the MAPK signaling pathway. CONCLUSION Orientin alleviated psoriasis-like dermatitis by suppressing the MAPK signaling pathway, suggesting that orientin is a potential therapeutic for psoriasis.
Collapse
Affiliation(s)
- Qiu Long
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China; Molecular Biology Laboratory, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Ting Ma
- Department of Dermatology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Ye Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Shaojie Chen
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China; Department of Hepatobiliary Surgery, Guizhou Medical University Hospital, Guiyang, Guizhou 550000, China
| | - Shanshan Tang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Tao Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Yi Zhou
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Kexin Xu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Pengjie Wan
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Dermatology, Guizhou Branch of Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Guiyang, Guizhou 550000, China.
| | - Yu Cao
- Department of Dermatology, Guizhou Medical University Hospital, Guiyang, Guizhou 550000, China.
| |
Collapse
|
3
|
Olejnik-Wojciechowska J, Boboryko D, Bratborska AW, Rusińska K, Ostrowski P, Baranowska M, Pawlik A. The Role of Epigenetic Factors in the Pathogenesis of Psoriasis. Int J Mol Sci 2024; 25:3831. [PMID: 38612637 PMCID: PMC11011681 DOI: 10.3390/ijms25073831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease, the prevalence of which is increasing. Genetic, genomic, and epigenetic changes play a significant role in the pathogenesis of psoriasis. This review summarizes the impact of epigenetics on the development of psoriasis and highlights challenges for the future. The development of epigenetics provides a basis for the search for genetic markers associated with the major histocompatibility complex. Genome-wide association studies have made it possible to link psoriasis to genes and therefore to epigenetics. The acquired knowledge may in the future serve as a solid foundation for developing newer, increasingly effective methods of treating psoriasis. In this narrative review, we discuss the role of epigenetic factors in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| | | | - Klaudia Rusińska
- Department of General Pathology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Piotr Ostrowski
- Department of Nursing, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland
| | - Magdalena Baranowska
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| |
Collapse
|
4
|
Guo J, Zhang H, Lin W, Lu L, Su J, Chen X. Signaling pathways and targeted therapies for psoriasis. Signal Transduct Target Ther 2023; 8:437. [PMID: 38008779 PMCID: PMC10679229 DOI: 10.1038/s41392-023-01655-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 11/28/2023] Open
Abstract
Psoriasis is a common, chronic, and inflammatory skin disease with a high burden on individuals, health systems, and society worldwide. With the immunological pathologies and pathogenesis of psoriasis becoming gradually revealed, the therapeutic approaches for this disease have gained revolutionary progress. Nevertheless, the mechanisms of less common forms of psoriasis remain elusive. Furthermore, severe adverse effects and the recurrence of disease upon treatment cessation should be noted and addressed during the treatment, which, however, has been rarely explored with the integration of preliminary findings. Therefore, it is crucial to have a comprehensive understanding of the mechanisms behind psoriasis pathogenesis, which might offer new insights for research and lead to more substantive progress in therapeutic approaches and expand clinical options for psoriasis treatment. In this review, we looked to briefly introduce the epidemiology, clinical subtypes, pathophysiology, and comorbidities of psoriasis and systematically discuss the signaling pathways involving extracellular cytokines and intracellular transmission, as well as the cross-talk between them. In the discussion, we also paid more attention to the potential metabolic and epigenetic mechanisms of psoriasis and the molecular mechanistic cascades related to its comorbidities. This review also outlined current treatment for psoriasis, especially targeted therapies and novel therapeutic strategies, as well as the potential mechanism of disease recurrence.
Collapse
Affiliation(s)
- Jia Guo
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Hanyi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Wenrui Lin
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Lixia Lu
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410008, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China.
| |
Collapse
|
5
|
Natoli V, Charras A, Hofmann SR, Northey S, Russ S, Schulze F, McCann L, Abraham S, Hedrich CM. DNA methylation patterns in CD4 + T-cells separate psoriasis patients from healthy controls, and skin psoriasis from psoriatic arthritis. Front Immunol 2023; 14:1245876. [PMID: 37662940 PMCID: PMC10472451 DOI: 10.3389/fimmu.2023.1245876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background Psoriasis is an autoimmune/inflammatory disorder primarily affecting the skin. Chronic joint inflammation triggers the diagnosis of psoriatic arthritis (PsA) in approximately one-third of psoriasis patients. Although joint disease typically follows the onset of skin psoriasis, in around 15% of cases it is the initial presentation, which can result in diagnostic delays. The pathophysiological mechanisms underlying psoriasis and PsA are not yet fully understood, but there is evidence pointing towards epigenetic dysregulation involving CD4+ and CD8+ T-cells. Objectives The aim of this study was to investigate disease-associated DNA methylation patterns in CD4+ T-cells from psoriasis and PsA patients that may represent potential diagnostic and/or prognostic biomarkers. Methods PBMCs were collected from 12 patients with chronic plaque psoriasis and 8 PsA patients, and 8 healthy controls. CD4+ T-cells were separated through FACS sorting, and DNA methylation profiling was performed (Illumina EPIC850K arrays). Bioinformatic analyses, including gene ontology (GO) and KEGG pathway analysis, were performed using R. To identify genes under the control of interferon (IFN), the Interferome database was consulted, and DNA Methylation Scores were calculated. Results Numbers and proportions of CD4+ T-cell subsets (naïve, central memory, effector memory, CD45RA re-expressing effector memory cells) did not vary between controls, skin psoriasis and PsA patients. 883 differentially methylated positions (DMPs) affecting 548 genes were identified between controls and "all" psoriasis patients. Principal component and partial least-squares discriminant analysis separated controls from skin psoriasis and PsA patients. GO analysis considering promoter DMPs delivered hypermethylation of genes involved in "regulation of wound healing, spreading of epidermal cells", "negative regulation of cell-substrate junction organization" and "negative regulation of focal adhesion assembly". Comparing controls and "all" psoriasis, a majority of DMPs mapped to IFN-related genes (69.2%). Notably, DNA methylation profiles also distinguished skin psoriasis from PsA patients (2,949 DMPs/1,084 genes) through genes affecting "cAMP-dependent protein kinase inhibitor activity" and "cAMP-dependent protein kinase regulator activity". Treatment with cytokine inhibitors (IL-17/TNF) corrected DNA methylation patterns of IL-17/TNF-associated genes, and methylation scores correlated with skin disease activity scores (PASI). Conclusion DNA methylation profiles in CD4+ T-cells discriminate between skin psoriasis and PsA. DNA methylation signatures may be applied for quantification of disease activity and patient stratification towards individualized treatment.
Collapse
Affiliation(s)
- Valentina Natoli
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Università degli Studi di Genova, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-infantili (DINOGMI), Genoa, Italy
| | - Amandine Charras
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sigrun R. Hofmann
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sarah Northey
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Susanne Russ
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Felix Schulze
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Liza McCann
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool, United Kingdom
| | - Susanne Abraham
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christian M. Hedrich
- Department of Women’s & Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Paediatric Rheumatology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool, United Kingdom
| |
Collapse
|
6
|
Su G, Du L, Yu H, Li M, Huang R, Yang X, Wang D, Wang Q, Yang P. Epigenome-wide association study identifies Vogt-Koyanagi-Harada disease-associated DNA methylation loci in Chinese. Exp Eye Res 2023:109553. [PMID: 37394087 DOI: 10.1016/j.exer.2023.109553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/11/2023] [Accepted: 06/23/2023] [Indexed: 07/04/2023]
Abstract
DNA methylation is one of the important epigenetic mechanisms for modulating gene expression. By performing a genome-wide methylation association analysis of whole peripheral blood from 60 Vogt-Koyanagi-Harada disease (VKH) patients and 60 healthy controls, we depicted the global DNA methylation status of VKH disease. Further pyrosequencing validation in 160 patients and 159 controls identified 3 aberrant CpG sites in HLA gene regions including cg04026937 and cg18052547 (located in HLA-DRB1 region), and cg13778567 (HLA-DQA1). We also identified 9 aberrant CpG sites in non-HLA gene regions including cg13979407, cg21075643, cg24290586, cg10135747 and cg22707857 (BTNL2), cg22155039 (NOTCH4), cg02605387 (TNXB), cg06255004 (AGPAT2) and cg18855195 (RIBC2). Increased mRNA levels of BTNL2, NOTCH4 and TNXB were identified in VKH patients when compared with healthy controls, consistent with the hypomethylated CpG status in these gene regions. Moreover, seven aberrantly methylated CpG sites may serve as a diagnostic marker for VKH disease (AUC = 84.95%, 95%CI: 79.49%-90.41%).
Collapse
Affiliation(s)
- Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Liping Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, China
| | - Hongsong Yu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Minghui Li
- Sinotech Genomics Ltd, Shanghai, 210000, China
| | | | | | - Detao Wang
- Shanghai Biotechnology Corporation, Shanghai, China
| | - Qing Wang
- Shanghai Biotechnology Corporation, Shanghai, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China.
| |
Collapse
|