1
|
Li K, Chen Z, Chang X, Xue R, Wang H, Guo W. Wnt signaling pathway in spinal cord injury: from mechanisms to potential applications. Front Mol Neurosci 2024; 17:1427054. [PMID: 39114641 PMCID: PMC11303303 DOI: 10.3389/fnmol.2024.1427054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Spinal cord injury (SCI) denotes damage to both the structure and function of the spinal cord, primarily manifesting as sensory and motor deficits caused by disruptions in neural transmission pathways, potentially culminating in irreversible paralysis. Its pathophysiological processes are complex, with numerous molecules and signaling pathways intricately involved. Notably, the pronounced upregulation of the Wnt signaling pathway post-SCI holds promise for neural regeneration and repair. Activation of the Wnt pathway plays a crucial role in neuronal differentiation, axonal regeneration, local neuroinflammatory responses, and cell apoptosis, highlighting its potential as a therapeutic target for treating SCI. However, excessive activation of the Wnt pathway can also lead to negative effects, highlighting the need for further investigation into its applicability and significance in SCI. This paper provides an overview of the latest research advancements in the Wnt signaling pathway in SCI, summarizing the recent progress in treatment strategies associated with the Wnt pathway and analyzing their advantages and disadvantages. Additionally, we offer insights into the clinical application of the Wnt signaling pathway in SCI, along with prospective avenues for future research direction.
Collapse
Affiliation(s)
| | | | | | | | - Huaibo Wang
- Department of Spine Surgery, The Second Hospital Affiliated to Guangdong Medical University, Zhanjiang, China
| | | |
Collapse
|
2
|
Li Y, Wang W, Kong C, Chen X, Li C, Lu S. Identifying the miRNA-gene networks contributes to exploring paravertebral muscle degeneration's underlying pathogenesis and therapy strategy. Heliyon 2024; 10:e30517. [PMID: 38765163 PMCID: PMC11098802 DOI: 10.1016/j.heliyon.2024.e30517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Low back pain (LBP) is a worldwide problem with public health. Paravertebral muscle degeneration (PMD) is believed to be associated with LBP. Increasing evidence has demonstrated that microRNA (miRNA)-mRNA signaling networks have been implicated in the pathophysiology of diseases. Research suggests that cell death, oxidative stress, inflammatory and immune response, and extracellular matrix (ECM) metabolism are the pathogenesis of PMD; however, the miRNA-mRNA mediated the pathological process of PMD remains elusive. RNA sequencing (RNA-seq) and single cell RNA-seq (scRNA-seq) are invaluable tools for uncovering the functional biology underlying these miRNA and gene expression changes. Using scRNA-seq, we show that multiple immunocytes are presented during PMD, revealing that they may have been implicated with PMD. Additionally, using RNA-seq, we identified 76 differentially expressed genes (DEGs) and 106 differentially expressed miRNAs (DEMs), among which IL-24 and CCDC63 were the top upregulated and downregulated genes in PMD. Comprehensive bioinformatics analyses, including Venn diagrams, differential expression, functional enrichment, and protein-protein interaction analysis, were then conducted to identify six ferroptosis-related DEGs, two oxidative stress-related DEGs, eleven immunity-related DEGs, five ECM-related DEGs, among which AKR1C2/AKR1C3/SIRT1/ALB/IL-24 belong to inflammatory genes. Furthermore, 67 DEMs were predicted to be upstream miRNAs of 25 key DEGs by merging RNA-seq, TargetScan, and mirDIP databases. Finally, a miRNA-gene network was constructed using Cytoscape software and an alluvial plot. ROC curve analysis unveiled multiple key DEGs with the high clinical diagnostic value, providing novel approaches for diagnosing and treating PMD diseases.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
- Spine Center, Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17, Lujiang Road, Hefei, Anhui, 230001, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Chaoyi Li
- Department of Joint Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| |
Collapse
|
3
|
Li Y, Wang B, Sun W, Kong C, Ding J, Hu F, Li J, Chen X, Lu S. Construction of circ_0071922-miR-15a-5p-mRNA network in intervertebral disc degeneration by RNA-sequencing. JOR Spine 2024; 7:e1275. [PMID: 38222808 PMCID: PMC10782064 DOI: 10.1002/jsp2.1275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/25/2023] [Accepted: 07/19/2023] [Indexed: 01/16/2024] Open
Abstract
Background Low back pain (LBP) is the main factor of global disease burden. Intervertebral disc degeneration (IVDD) has long been known as the leading reason of LBP. Increasing studies have verified that circular RNAs (circRNAs)-microRNAs (miRNAs)-mRNAs network is widely involved in the pathological processes of IVDD. However, no study was made to demonstrate the circRNAs-mediated ferroptosis, oxidative stress, extracellular matrix metabolism, and immune response in IVDD. Methods We collected 3 normal and 3 degenerative nucleus pulposus tissues to conduct RNA-sequencing to identify the key circRNAs and miRNAs in IVDD. Bioinformatics analysis was then conducted to construct circRNAs-miRNAs-mRNAs interaction network associated with ferroptosis, oxidative stress, extracellular matrix metabolism, and immune response. We also performed animal experiments to validate the therapeutic effects of key circRNAs in IVDD. Results We found that circ_0015435 was most obviously upregulated and circ_0071922 was most obviously downregulated in IVDD using RNA-sequencing. Then we observed that hsa-miR-15a-5p was the key downstream of circ_0071922, and hsa-miR-15a-5p was the top upregulated miRNA in IVDD. Bioinformatics analysis was conducted to predict that 56 immunity-related genes, 29 ferroptosis-related genes, 23 oxidative stress-related genes and 8 ECM-related genes are the targets mRNAs of hsa-miR-15a-5p. Then we constructed a ceRNA network encompassing 24 circRNAs, 6 miRNAs, and 101 mRNAs. Additionally, we demonstrated that overexpression of circ_0071922 can alleviate IVDD progression in a rat model. Conclusions The findings of this study suggested that circ_0071922-miR-15a-5p-mRNA signaling network might affect IVDD by modulating the nucleus pulposus cells ferroptosis, oxidative stress, ECM metabolism, and immune response, which is an effective therapeutic targets of IVDD.
Collapse
Affiliation(s)
- Yongjin Li
- Department of OrthopedicsXuanwu Hospital, Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Baobao Wang
- Department of OrthopedicsXuanwu Hospital, Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Wenzhi Sun
- Department of OrthopedicsXuanwu Hospital, Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Chao Kong
- Department of OrthopedicsXuanwu Hospital, Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Junzhe Ding
- Department of OrthopedicsXuanwu Hospital, Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Feng Hu
- Spine Center, Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Jianhua Li
- Department of OrthopedicsTianjin Haihe HospitalTianjinChina
| | - Xiaolong Chen
- Department of OrthopedicsXuanwu Hospital, Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| | - Shibao Lu
- Department of OrthopedicsXuanwu Hospital, Capital Medical UniversityBeijingChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
| |
Collapse
|
4
|
Chen X, Tang H, Lu K, Niu Z, Sheng W, Hwang HY, Pang PYK, Phillips JD, Khoynezhad A, Qu X, Li B, Han W. Gene modules and genes associated with postoperative atrial fibrillation: weighted gene co-expression network analysis and circRNA-miRNA-mRNA regulatory network analysis. J Thorac Dis 2023; 15:4949-4960. [PMID: 37868904 PMCID: PMC10586969 DOI: 10.21037/jtd-23-1179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/31/2023] [Indexed: 10/24/2023]
Abstract
Background Atrial fibrillation (AF) is the most common complication in patients undergoing cardiac surgery. However, the pathogenesis of postoperative AF (POAF) is elusive, and research related to this topic is sparse. Our study aimed to identify key gene modules and genes and to conduct a circular RNA (circRNA)-microRNA (miRNA)-messenger RNA (mRNA) regulatory network analysis of POAF on the basis of bioinformatic analysis. Methods The GSE143924 and GSE97455 data sets from the Gene Expression Omnibus (GEO) database were analyzed. Weighted gene co-expression network analysis (WGCNA) was used to identify the key gene modules and genes related to POAF. A circRNA-miRNA-mRNA regulatory network was also built according to differential expression analysis. Functional enrichment analysis was further performed according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Results WGCNA identified 2 key gene modules and 44 key genes that were significantly related to POAF. Functional enrichment analysis of these key genes implicated the following important biological processes (BPs): endosomal transport, protein kinase B signaling, and transcription regulation. The circRNA-miRNA-mRNA regulatory network suggested that KLF10 may take critical part in POAF. Moreover, 2 novel circRNAs, hsa_circRNA_001654 and hsa_circRNA_005899, and 2 miRNAs, hsa-miR-19b-3p and hsa-miR-30a-5p, which related with KLF10, were involved in the network. Conclusions Our study provides foundational expression profiles following POAF based on WGCNA. The circRNA-miRNA-mRNA network offers insights into the BPs and underlying mechanisms of POAF.
Collapse
Affiliation(s)
- Xiaomeng Chen
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Cardiology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Huaiguang Tang
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Cardiology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Kongmiao Lu
- Department of Pulmonary and Critical Care Medicine, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Zhaozhuo Niu
- Department of Cardiovascular Surgery, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wei Sheng
- Department of Cardiovascular Surgery, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Ho Young Hwang
- Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Philip Y. K. Pang
- Department of Cardiothoracic Surgery, National Heart Centre Singapore, Singapore, Singapore
| | - Joseph D. Phillips
- Section of Thoracic Surgery, Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr., Lebanon, NH, USA
| | - Ali Khoynezhad
- Department of Cardiovascular Surgery, MemorialCare Heart and Vascular Institute, Long Beach, CA, USA
| | - Xiaolu Qu
- Department of Pulmonary and Critical Care Medicine, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Bingong Li
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Cardiology, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wei Han
- Department of Pulmonary and Critical Care Medicine, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|