1
|
Xu C, Chen C, Xu Y, Li Z, Chen H, Wang G. Prognostic Significance of CDK1 in Ovarian and Cervical Cancers. J Cancer 2025; 16:1656-1667. [PMID: 39991589 PMCID: PMC11843233 DOI: 10.7150/jca.104371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/13/2024] [Indexed: 02/25/2025] Open
Abstract
Background: Ovarian cancer (OC) and cervical cancer (CC) are the leading causes of death among women. Therefore, identifying markers for early detection and treatment is critical. CDK1 governs the G2/M transition of the cell cycle and is a significant regulatory protein of the cycle. RO-3306 and UBE2C are related to CDK1 expression and might jointly facilitate the development of OC. CDK1 and CDK2 phosphorylate MLK3, which plays an important role in the invasion and proliferation of OC cells. Furthermore, miR-490-3P targets CDK1 and restrains the growth of ovarian tumors. CDK1 also plays a crucial part in the progression of CC. For instance, CDK1 overexpression can rescue the effect of RCC1 knockdown, which is involved in key processes, such as cytoplasmic transport, on G1 cell cycle progression. Using bioinformatics analysis, we evaluated the functional enrichment and role of the co-expressed gene CDK1 in these two cancers and its impact on their prognoses. Methods: First, we screened public datasets for OC- and CC-associated DEGs and identified intersecting genes. Enrichment analyses of these genes revealed key biological pathways and processes. We then generated protein-protein interaction networks to identify central genes and important gene modules. Results: Additional enrichment analyses revealed that cell cycle regulation and germ cell maturation were the primary processes regulated by these core genes. We also examined the function of CDK1 in OC and CC, demonstrating its overexpression and its association with particular immunological cell infiltration patterns. Furthermore, CDK1 mutational burden, copy number variation, and patient survival analyses indicated that CDK1 may be a useful prognostic marker. Finally, immunohistochemical examination confirmed the expression of some candidate genes in clinical samples. Conclusion: These findings shed light on the molecular causes of OC and CC and will aid the identification of novel targets for future research regarding these cancers, including their diagnosis and treatment.
Collapse
Affiliation(s)
- Cong Xu
- School of Clinical Medicine, Dali University, Dali 671000, Yunnan, People's Republic of China
| | - Chaowen Chen
- Chinese People's Life Safety Research Institute, Huaxi Hospital, Sichuan University, Chengdu 610000, Sichuan
| | - Yonghong Xu
- Chongqing Medical University, Chongqing, Banan 401300, People's Republic of China
| | - Zhenqi Li
- West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Huaqiu Chen
- Department of Clinical Laboratory, Xichang People's Hospital, Xichang, People's Republic of China
| | - Guangming Wang
- School of Clinical Medicine, Dali University, Dali 671000, Yunnan, People's Republic of China
- Center of Genetic Testing, Dali University, Dali 671000, People's Republic of China
| |
Collapse
|
2
|
Kemp F, Braverman EL, Byersdorfer CA. Fatty acid oxidation in immune function. Front Immunol 2024; 15:1420336. [PMID: 39007133 PMCID: PMC11240245 DOI: 10.3389/fimmu.2024.1420336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024] Open
Abstract
Cellular metabolism is a crucial determinant of immune cell fate and function. Extensive studies have demonstrated that metabolic decisions influence immune cell activation, differentiation, and cellular capacity, in the process impacting an organism's ability to stave off infection or recover from injury. Conversely, metabolic dysregulation can contribute to the severity of multiple disease conditions including autoimmunity, alloimmunity, and cancer. Emerging data also demonstrate that metabolic cues and profiles can influence the success or failure of adoptive cellular therapies. Importantly, immunometabolism is not one size fits all; and different immune cell types, and even subdivisions within distinct cell populations utilize different metabolic pathways to optimize function. Metabolic preference can also change depending on the microenvironment in which cells are activated. For this reason, understanding the metabolic requirements of different subsets of immune cells is critical to therapeutically modulating different disease states or maximizing cellular function for downstream applications. Fatty acid oxidation (FAO), in particular, plays multiple roles in immune cells, providing both pro- and anti-inflammatory effects. Herein, we review the major metabolic pathways available to immune cells, then focus more closely on the role of FAO in different immune cell subsets. Understanding how and why FAO is utilized by different immune cells will allow for the design of optimal therapeutic interventions targeting this pathway.
Collapse
Affiliation(s)
| | | | - Craig A. Byersdorfer
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Cappabianca D, Pham D, Forsberg MH, Bugel M, Tommasi A, Lauer A, Vidugiriene J, Hrdlicka B, McHale A, Sodji QH, Skala MC, Capitini CM, Saha K. Metabolic priming of GD2 TRAC-CAR T cells during manufacturing promotes memory phenotypes while enhancing persistence. Mol Ther Methods Clin Dev 2024; 32:101249. [PMID: 38699288 PMCID: PMC11063605 DOI: 10.1016/j.omtm.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Manufacturing chimeric antigen receptor (CAR) T cell therapies is complex, with limited understanding of how medium composition impacts T cell phenotypes. CRISPR-Cas9 ribonucleoproteins can precisely insert a CAR sequence while disrupting the endogenous T cell receptor alpha constant (TRAC) gene resulting in TRAC-CAR T cells with an enriched stem cell memory T cell population, a process that could be further optimized through modifications to the medium composition. In this study we generated anti-GD2 TRAC-CAR T cells using "metabolic priming" (MP), where the cells were activated in glucose/glutamine-low medium and then expanded in glucose/glutamine-high medium. T cell products were evaluated using spectral flow cytometry, metabolic assays, cytokine production, cytotoxicity assays in vitro, and potency against human GD2+ xenograft neuroblastoma models in vivo. Compared with standard TRAC-CAR T cells, MP TRAC-CAR T cells showed less glycolysis, higher CCR7/CD62L expression, more bound NAD(P)H activity, and reduced IFN-γ, IL-2, IP-10, IL-1β, IL-17, and TGF-β production at the end of manufacturing ex vivo, with increased central memory CAR T cells and better persistence observed in vivo. MP with medium during CAR T cell biomanufacturing can minimize glycolysis and enrich memory phenotypes ex vivo, which could lead to better responses against solid tumors in vivo.
Collapse
Affiliation(s)
- Dan Cappabianca
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Dan Pham
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Matthew H. Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Madison Bugel
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Anna Tommasi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | | | - Brookelyn Hrdlicka
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Alexandria McHale
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Quaovi H. Sodji
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
4
|
Cappabianca D, Pham D, Forsberg MH, Bugel M, Tommasi A, Lauer A, Vidugiriene J, Hrdlicka B, McHale A, Sodji Q, Skala MC, Capitini CM, Saha K. Metabolic priming of GD2 TRAC -CAR T cells during manufacturing promotes memory phenotypes while enhancing persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.575774. [PMID: 38562720 PMCID: PMC10983869 DOI: 10.1101/2024.01.31.575774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Manufacturing Chimeric Antigen Receptor (CAR) T cell therapies is complex, with limited understanding of how media composition impact T-cell phenotypes. CRISPR/Cas9 ribonucleoproteins can precisely insert a CAR sequence while disrupting the endogenous T cell receptor alpha constant ( TRAC ) gene resulting in TRAC -CAR T cells with an enriched stem cell memory T-cell population, a process that could be further optimized through modifications to the media composition. In this study we generated anti-GD2 TRAC -CAR T cells using "metabolic priming" (MP), where the cells were activated in glucose/glutamine low media and then expanded in glucose/glutamine high media. T cell products were evaluated using spectral flow cytometry, metabolic assays, cytokine production, cytotoxicity assays in vitro and potency against human GD2+ xenograft neuroblastoma models in vivo . Compared to standard TRAC -CAR T cells, MP TRAC -CAR T cells showed less glycolysis, higher CCR7/CD62L expression, more bound NAD(P)H activity and reduced IFN-γ, IL-2, IP-10, IL-1β, IL-17, and TGFβ production at the end of manufacturing ex vivo , with increased central memory CAR T cells and better persistence observed in vivo . Metabolic priming with media during CAR T cell biomanufacturing can minimize glycolysis and enrich memory phenotypes ex vivo , which could lead to better responses against solid tumors in vivo .
Collapse
|
5
|
Ganjoo S, Gupta P, Corbali HI, Nanez S, Riad TS, Duong LK, Barsoumian HB, Masrorpour F, Jiang H, Welsh JW, Cortez MA. The role of tumor metabolism in modulating T-Cell activity and in optimizing immunotherapy. Front Immunol 2023; 14:1172931. [PMID: 37180129 PMCID: PMC10169689 DOI: 10.3389/fimmu.2023.1172931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment and revitalized efforts to harness the power of the immune system to combat a variety of cancer types more effectively. However, low clinical response rates and differences in outcomes due to variations in the immune landscape among patients with cancer continue to be major limitations to immunotherapy. Recent efforts to improve responses to immunotherapy have focused on targeting cellular metabolism, as the metabolic characteristics of cancer cells can directly influence the activity and metabolism of immune cells, particularly T cells. Although the metabolic pathways of various cancer cells and T cells have been extensively reviewed, the intersections among these pathways, and their potential use as targets for improving responses to immune-checkpoint blockade therapies, are not completely understood. This review focuses on the interplay between tumor metabolites and T-cell dysfunction as well as the relationship between several T-cell metabolic patterns and T-cell activity/function in tumor immunology. Understanding these relationships could offer new avenues for improving responses to immunotherapy on a metabolic basis.
Collapse
Affiliation(s)
- Shonik Ganjoo
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priti Gupta
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Halil Ibrahim Corbali
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Türkiye
| | - Selene Nanez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Thomas S. Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa K. Duong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B. Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fatemeh Masrorpour
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - James W. Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|