1
|
Li M, Xu Y, Yu Y, Li W, Chen L, Zhao B, Gao Y, Gao J, Lin H. Transdermal delivery of natural products against atopic dermatitis. Chin J Nat Med 2024; 22:1076-1088. [PMID: 39725509 DOI: 10.1016/s1875-5364(24)60681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 12/28/2024]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition. Natural products have gained traction in AD treatment due to their accessibility, low toxicity, and favorable pharmacological properties. However, their application is primarily constrained by poor solubility, instability, and limited permeability. The transdermal drug delivery system (TDDS) offers potential solutions for transdermal delivery, enhanced penetration, improved efficacy, and reduced toxicity of natural drugs, aligning with the requirements of modern AD treatment. This review examines the application of hydrogels, microneedles (MNs), liposomes, nanoemulsions, and other TDDS-carrying natural products in AD treatment, with a primary focus on their effects on penetration and accumulation in the skin. The aim is to provide valuable insights into the treatment of AD and other dermatological conditions.
Collapse
Affiliation(s)
- Minghui Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanan Yu
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Wanshu Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Lixia Chen
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Bo Zhao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Yuli Gao
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hangjuan Lin
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, China.
| |
Collapse
|
2
|
Chang TS, Ding HY, Wang TY, Wu JY, Tsai PW, Suratos KS, Tayo LL, Liu GC, Ting HJ. In silico-guided synthesis of a new, highly soluble, and anti-melanoma flavone glucoside: Skullcapflavone II-6'-O-β-glucoside. Biotechnol Appl Biochem 2024. [PMID: 39449153 DOI: 10.1002/bab.2685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Guided by in silico analysis tools and biotransformation technology, new derivatives of natural compounds with heightened bioactivities can be explored and synthesized efficiently. In this study, in silico data mining and molecular docking analysis predicted that glucosides of skullcapflavone II (SKII) were new flavonoid compounds and had higher binding potential to oncogenic proteins than SKII. These benefits guided us to perform glycosylation of SKII by utilizing four glycoside hydrolases and five glycosyltransferases (GTs). Findings unveiled that exclusive glycosylation of SKII was achieved solely through the action of GTs, with Bacillus subtilis BsUGT489 exhibiting the highest catalytic glycosylation efficacy. Structure analysis determined the glycosylated product as a novel compound, skullcapflavone II-6'-O-β-glucoside (SKII-G). Significantly, the aqueous solubility of SKII-G exceeded its precursor, SKII, by 272-fold. Furthermore, SKII-G demonstrated noteworthy anti-melanoma activity against human A2058 cells, exhibiting an IC50 value surpassing that of SKII by 1.4-fold. Intriguingly, no substantial cytotoxic effects were observed in a murine macrophage cell line, RAW 264.7. This promising anti-melanoma activity without adverse effects on macrophages suggests that SKII-G could be a potential candidate for further preclinical and clinical studies. The in silico tool-guided synthesis of a new, highly soluble, and potent anti-melanoma glucoside, SKII-G, provides a rational design to facilitate the future discovery of new and bioactive compounds.
Collapse
Affiliation(s)
- Te-Sheng Chang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Hsiou-Yu Ding
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jiumn-Yih Wu
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Khyle S Suratos
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Manila, Philippines
- School of Graduate Studies, Mapúa University, Manila, Philippines
| | - Lemmuel L Tayo
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Manila, Philippines
- Department of Biology, School of Health Sciences, Mapúa University, Makati, Philippines
| | - Guan-Cheng Liu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| | - Huei-Ju Ting
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan
| |
Collapse
|
3
|
Zheng R, Ren Y, Liu X, He C, Liu H, Wang Y, Li J, Xia S, Liu Z, Ma Y, Wang D, Xu S, Wang G, Li N. Exogenous drug-induced mouse models of atopic dermatitis. Cytokine Growth Factor Rev 2024; 77:104-116. [PMID: 38272716 DOI: 10.1016/j.cytogfr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
Atopic dermatitis (AD) is an inflammatory skin disease characterized by intense pruritus. AD is harmful to both children and adults, but its pathogenic mechanism has yet to be fully elucidated. The development of mouse models for AD has greatly contributed to its study and treatment. Among these models, the exogenous drug-induced mouse model has shown promising results and significant advantages. Until now, a large amount of AD-related research has utilized exogenous drug-induced mouse models, leading to notable advancements in research. This indicates the crucial significance of applying such models in AD research. These models exhibit diverse characteristics and are highly complex. They involve the use of various strains of mice, diverse types of inducers, and different modeling effects. However, there is currently a lack of comprehensive comparative studies on exogenous drug-induced AD mouse models, which hinders researchers' ability to choose among these models. This paper provides a comprehensive review of the features and mechanisms associated with various exogenous drug-induced mouse models, including the important role of each cytokine in AD development. It aims to assist researchers in quickly understanding models and selecting the most suitable one for further investigation.
Collapse
Affiliation(s)
- Rou Zheng
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yan Ren
- Health Science Center, Ningbo University, Ningbo, China.
| | - Xinyue Liu
- Health Science Center, Ningbo University, Ningbo, China.
| | - Canxia He
- Health Science Center, Ningbo University, Ningbo, China.
| | - Hua Liu
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Jianing Li
- Health Science Center, Ningbo University, Ningbo, China.
| | - Shuya Xia
- Health Science Center, Ningbo University, Ningbo, China.
| | - Zhifang Liu
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Yizhao Ma
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Dianchen Wang
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Suling Xu
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Geng Wang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Na Li
- Health Science Center, Ningbo University, Ningbo, China; Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|