1
|
Wei J, Guo F, Song Y, Feng T, Wang Y, Xu K, Song J, Kaysar E, Abdukayyum R, Lin F, Li K, Li B, Qian Z, Wang X, Wang H, Xu T. Analysis of the components of Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) and its regulation of γδ T-cell function. Cell Mol Biol Lett 2024; 29:70. [PMID: 38741147 PMCID: PMC11089708 DOI: 10.1186/s11658-024-00585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Mycobacterium tuberculosis heat-resistant antigen (Mtb-HAg) is a peptide antigen released from the mycobacterial cytoplasm into the supernatant of Mycobacterium tuberculosis (Mtb) attenuated H37Ra strain after autoclaving at 121 °C for 20 min. Mtb-HAg can specifically induce γδ T-cell proliferation in vitro. However, the exact composition of Mtb-HAg and the protein antigens that are responsible for its function are currently unknown. METHODS Mtb-HAg extracted from the Mtb H37Ra strain was subjected to LC‒MS mass spectrometry. Twelve of the identified protein fractions were recombinantly expressed in Escherichia coli by genetic engineering technology using pET-28a as a plasmid and purified by Ni-NTA agarose resin to stimulate peripheral blood mononuclear cells (PBMCs) from different healthy individuals. The proliferation of γδ T cells and major γδ T-cell subset types as well as the production of TNF-α and IFN-γ were determined by flow cytometry. Their proliferating γδ T cells were isolated and purified using MACS separation columns, and Mtb H37Ra-infected THP-1 was co-cultured with isolated and purified γδ T cells to quantify Mycobacterium viability by counting CFUs. RESULTS In this study, Mtb-HAg from the attenuated Mtb H37Ra strain was analysed by LC‒MS mass spectrometry, and a total of 564 proteins were identified. Analysis of the identified protein fractions revealed that the major protein components included heat shock proteins and Mtb-specific antigenic proteins. Recombinant expression of 10 of these proteins in by Escherichia coli genetic engineering technology was used to successfully stimulate PBMCs from different healthy individuals, but 2 of the proteins, EsxJ and EsxA, were not expressed. Flow cytometry results showed that, compared with the IL-2 control, HspX, GroEL1, and GroES specifically induced γδ T-cell expansion, with Vγ2δ2 T cells as the main subset, and the secretion of the antimicrobial cytokines TNF-α and IFN-γ. In contrast, HtpG, DnaK, GroEL2, HbhA, Mpt63, EsxB, and EsxN were unable to promote γδ T-cell proliferation and the secretion of TNF-α and IFN-γ. None of the above recombinant proteins were able to induce the secretion of TNF-α and IFN-γ by αβ T cells. In addition, TNF-α, IFN-γ-producing γδ T cells inhibit the growth of intracellular Mtb. CONCLUSION Activated γδ T cells induced by Mtb-HAg components HspX, GroES, GroEL1 to produce TNF-α, IFN-γ modulate macrophages to inhibit intracellular Mtb growth. These data lay the foundation for subsequent studies on the mechanism by which Mtb-HAg induces γδ T-cell proliferation in vitro, as well as the development of preventive and therapeutic vaccines and rapid diagnostic reagents.
Collapse
MESH Headings
- Humans
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Antigens, Bacterial/genetics
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/genetics
- Cell Proliferation
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Tumor Necrosis Factor-alpha/metabolism
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/immunology
- Bacterial Proteins/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
Collapse
Affiliation(s)
- Jing Wei
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Fangzheng Guo
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Yamin Song
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Tong Feng
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Ying Wang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Kun Xu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Jianhan Song
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Eldana Kaysar
- Xinjiang Key Laboratory of Hotan Characteristic Chinese Traditional Medicine Research, College of Xinjiang Uyghur Medicine, Hotan, 848099, China
| | - Reyima Abdukayyum
- Xinjiang Key Laboratory of Hotan Characteristic Chinese Traditional Medicine Research, College of Xinjiang Uyghur Medicine, Hotan, 848099, China
| | - Feiyang Lin
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Kangsheng Li
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Baiqing Li
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Zhongqing Qian
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Bengbu Medical University, Bengbu, 233000, China
| | - Hongtao Wang
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China.
- Xinjiang Key Laboratory of Hotan Characteristic Chinese Traditional Medicine Research, College of Xinjiang Uyghur Medicine, Hotan, 848099, China.
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China.
| | - Tao Xu
- Laboratory Medicine Experimental Center, Laboratory Medicine College, Bengbu Medical University, Bengbu, 233000, China.
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, 233000, China.
| |
Collapse
|
2
|
Parwani KK, Branella GM, Burnham RE, Burnham AJ, Bustamante AYS, Foppiani EM, Knight KA, Petrich BG, Horwitz EM, Doering CB, Spencer HT. Directing the migration of serum-free, ex vivo-expanded Vγ9Vδ2 T cells. Front Immunol 2024; 15:1331322. [PMID: 38487542 PMCID: PMC10937339 DOI: 10.3389/fimmu.2024.1331322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
Vγ9Vδ2 T cells represent a promising cancer therapy platform because the implementation of allogenic, off-the-shelf product candidates is possible. However, intravenous administration of human Vγ9Vδ2 T cells manufactured under good manufacturing practice (GMP)-compliant, serum-free conditions are not tested easily in most mouse models, mainly because they lack the ability to migrate from the blood to tissues or tumors. We demonstrate that these T cells do not migrate from the circulation to the mouse bone marrow (BM), the site of many malignancies. Thus, there is a need to better characterize human γδ T-cell migration in vivo and develop strategies to direct these cells to in vivo sites of therapeutic interest. To better understand the migration of these cells and possibly influence their migration, NSG mice were conditioned with agents to clear BM cellular compartments, i.e., busulfan or total body irradiation (TBI), or promote T-cell migration to inflamed BM, i.e., incomplete Freund's adjuvant (IFA), prior to administering γδ T cells. Conditioning with TBI, unlike busulfan or IFA, increases the percentage and number of γδ T cells accumulating in the mouse BM, and cells in the peripheral blood (PB) and BM display identical surface protein profiles. To better understand the mechanism by which cells migrate to the BM, mice were conditioned with TBI and administered γδ T cells or tracker-stained red blood cells. The mechanism by which γδ T cells enter the BM after radiation is passive migration from the circulation, not homing. We tested if these ex vivo-expanded cells can migrate based on chemokine expression patterns and showed that it is possible to initiate homing by utilizing highly expressed chemokine receptors on the expanded γδ T cells. γδ T cells highly express CCR2, which provides chemokine attraction to C-C motif chemokine ligand 2 (CCL2)-expressing cells. IFNγ-primed mesenchymal stromal cells (MSCs) (γMSCs) express CCL2, and we developed in vitro and in vivo models to test γδ T-cell homing to CCL2-expressing cells. Using an established neuroblastoma NSG mouse model, we show that intratumorally-injected γMSCs increase the homing of γδ T cells to this tumor. These studies provide insight into the migration of serum-free, ex vivo-expanded Vγ9Vδ2 T cells in NSG mice, which is critical to understanding the fundamental properties of these cells.
Collapse
Affiliation(s)
- Kiran K Parwani
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Gianna M Branella
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Rebecca E Burnham
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Andre J Burnham
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Austre Y Schiaffino Bustamante
- Cancer Biology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Elisabetta Manuela Foppiani
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Kristopher A Knight
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | | | - Edwin M Horwitz
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - H Trent Spencer
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|