1
|
Aucharova H, Linser R. Assignment of the N-terminal domain of mouse cGAS. BIOMOLECULAR NMR ASSIGNMENTS 2025; 19:35-39. [PMID: 39754705 PMCID: PMC12116816 DOI: 10.1007/s12104-024-10213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
Cyclic GMP-AMP synthase (cGAS) is a DNA-sensing enzyme that is a member of the nucleotidyltransferase (NTase) family and functions as a DNA sensor. The protein is comprised of a catalytic NTase core domain and an unstructured hypervariable N-terminal domain (NTD) that was reported to increase protein activity by providing an additional DNA-binding surface. We report nearly complete 1H, 15N, and 13C backbone chemical-shift assignments of mouse cGAS NTD (residues 5-146), obtained with a set of 3D and 4D solution NMR experiments. Analysis of the chemical-shift values confirms that the NTD is intrinsically disordered. These resonance assignments can provide the basis for further studies such as activation by DNA and protein-protein interactions.
Collapse
Affiliation(s)
- Hanna Aucharova
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
2
|
Li T, Wang Z, Liu Y, He S, Zou Q, Zhang Y. An overview of computational methods in single-cell transcriptomic cell type annotation. Brief Bioinform 2025; 26:bbaf207. [PMID: 40347979 PMCID: PMC12065632 DOI: 10.1093/bib/bbaf207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/14/2025] [Accepted: 04/01/2025] [Indexed: 05/14/2025] Open
Abstract
The rapid accumulation of single-cell RNA sequencing data has provided unprecedented computational resources for cell type annotation, significantly advancing our understanding of cellular heterogeneity. Leveraging gene expression profiles derived from transcriptomic data, researchers can accurately infer cell types, sparking the development of numerous innovative annotation methods. These methods utilize a range of strategies, including marker genes, correlation-based matching, and supervised learning, to classify cell types. In this review, we systematically examine these annotation approaches based on transcriptomics-specific gene expression profiles and provide a comprehensive comparison and categorization of these methods. Furthermore, we focus on the main challenges in the annotation process, especially the long-tail distribution problem arising from data imbalance in rare cell types. We discuss the potential of deep learning techniques to address these issues and enhance model capability in recognizing novel cell types within an open-world framework.
Collapse
Affiliation(s)
- Tianhao Li
- School of Computer Science, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, 610225 Chengdu, China
| | - Zixuan Wang
- College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, 610065 Chengdu, China
| | - Yuhang Liu
- Faculty of Applied Sciences, Macao Polytechnic University, 999078 Macao, China
| | - Sihan He
- School of Computer Science, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, 610225 Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Shahe Campus: No. 4, Section 2, North Jianshe Road, 611731 Chengdu, China
| | - Yongqing Zhang
- School of Computer Science, Chengdu University of Information Technology, No. 24 Block 1, Xuefu Road, 610225 Chengdu, China
| |
Collapse
|
3
|
Cao W, Su K, Lu C, Li J, Gui X. Effect and mechanism of the miR-1284/EIF4A1 axis on the cGAS-STING pathway under radiotherapy. Transl Cancer Res 2025; 14:2483-2494. [PMID: 40386253 PMCID: PMC12079598 DOI: 10.21037/tcr-2025-603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/10/2025] [Indexed: 05/20/2025]
Abstract
Background Gastric cancer (GC) remains a major global health concern, with limited treatment options, especially in advanced stages. Radiotherapy (RT) plays a vital role in GC management, but resistance to DNA damage impedes its effectiveness. MicroRNA-1284 (miR-1284), a tumor suppressor, regulates eukaryotic translation initiation factor 4A1 (EIF4A1), which is involved in DNA damage repair through homologous recombination (HR). This axis has been implicated in enhancing GC cell survival following RT. Additionally, the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, activated by DNA damage, plays a key role in triggering an anti-tumor immune response. However, the interaction between the miR-1284/EIF4A1 axis, DNA repair, and the cGAS-STING pathway in GC under RT conditions remains unclear. This study aims to investigate how the miR-1284/EIF4A1 axis influences DNA repair and its role in activating the cGAS-STING pathway to enhance RT efficacy in GC. Methods A stably expressed messenger miR-1284 cell line was established. Quantitative reverse transcription and western blot were used to examine the expression of miR-1284 and EIF4A1, and the effect of blocking the miR-1284/EIF4A1 axis on the cGAS-STING pathway and interferon-β (IFN-β) in GC cells after RT; cytotoxicity experiments were conducted to explore the mechanism of the miR-1284/EIF4A1 axis in radiation-induced DNA damage repair; animal experiments were conducted to explore the translational application of rocaglamide (RocA) combined with the programmed cell death-ligand 1 (PD-L1) antibody in RT. Results The miR-1284/EIF4A1 axis in the GC cells promoted the repair of radiation-induced DNA damage and was associated with the prognosis of GC patients. Blocking this axis delayed the C-terminal binding protein interacting protein (CtIP)-mediated DNA repair, enhanced RT effectiveness, and activated the cGAS-STING pathway, while increasing the rate of apoptosis. In vivo experiments based on RocA binding to PD-L1 antibodies under RT had good biological safety, and thus provide a potential therapeutic strategy for the treatment of GC. Conclusions The miR-1284/EIF4A1 axis promotes the repair of DNA damage caused by RT, promotes the activation of the cGAS-STING pathway in GC, and has good biological safety. Our findings provide an important experimental basis for enhancing the anti-tumor immune effect of RT in the treatment of GC.
Collapse
Affiliation(s)
- Wenlong Cao
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ka Su
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chunmiao Lu
- Department of Radiotherapy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiehua Li
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaolong Gui
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Luo Y, Liang G, Zhang Q, Luo B. The role of cGAS-STING signaling pathway in colorectal cancer immunotherapy: Mechanism and progress. Int Immunopharmacol 2024; 143:113447. [PMID: 39515043 DOI: 10.1016/j.intimp.2024.113447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor in the gastrointestinal tract, it is known as the "silent killer", which poses a serious threat to the lives of patients. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway responds to DNA by sensing, which plays an important role in anti-infection, autoimmune diseases and anti-tumor immunity. Recent studies have found that the activation of cGAS-STING pathway in CRC can induce the expression and secretion of type I interferon (IFN-I) and a variety of inflammatory factors, further activate anti-tumor CD8+ T cells, exert anti-tumor immune response, and inhibit the progression of CRC. Therefore, targeting the cGAS-STING pathway and developing drugs that can regulate the cGAS-STING pathway are of great significance for improving the therapeutic effect and prognosis of CRC patients. In this review, we introduce the cGAS-STING signaling pathway and the regulatory role of this signaling pathway in CRC immune microenvironment. In addition, we discussed the research progress of cGAS-STING pathway in CRC immunotherapy and the clinical research status of STING agonists developed against this pathway, emphasizing the clinical potential of CRC immunotherapy based on the cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Yan Luo
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China.
| | - Gai Liang
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China
| | - Qu Zhang
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China
| | - Bo Luo
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Hubei Province, Wuhan, China; Colorectal Cancer Clinical Medical Research Center of Wuhan, China.
| |
Collapse
|
5
|
Wei M, Li Q, Li S, Wang D, Wang Y. Multifaceted roles of cGAS-STING pathway in the lung cancer: from mechanisms to translation. PeerJ 2024; 12:e18559. [PMID: 39588006 PMCID: PMC11587877 DOI: 10.7717/peerj.18559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
Lung cancer (LC) remains one of the most prevalent and lethal malignancies globally, with a 5-year survival rate for advanced cases persistently below 10%. Despite the significant advancements in immunotherapy, a substantial proportion of patients with advanced LC fail to respond effectively to these treatments, highlighting an urgent need for novel immunotherapeutic targets. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has gained prominence as a potential target for improving LC immunotherapy due to its pivotal role in enhancing anti-tumor immune responses, augmenting tumor antigen presentation, and promoting T cell infiltration. However, emerging evidence also suggests that the cGAS-STING pathway may have pro-tumorigenic effects in the context of LC. This review aims to provide a comprehensive analysis of the cGAS-STING pathway, including its biological composition, activation mechanisms, and physiological functions, as well as its dual roles in LC and the current and emerging LC treatment strategies that target the pathway. By addressing these aspects, we intend to highlight the potential of the cGAS-STING pathway as a novel immunotherapeutic target, while also considering the challenges and future directions for its clinical application.
Collapse
Affiliation(s)
- Mingming Wei
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingzhou Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shengrong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yumei Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Lin C, Zhang C, Chen N, Meurens F, Zhu J, Zheng W. How Does African Swine Fever Virus Evade the cGAS-STING Pathway? Pathogens 2024; 13:957. [PMID: 39599510 PMCID: PMC11597325 DOI: 10.3390/pathogens13110957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
African swine fever (ASF), a highly infectious and devastating disease affecting both domestic pigs and wild boars, is caused by the African swine fever virus (ASFV). ASF has resulted in rapid global spread of the disease, leading to significant economic losses within the swine industry. A significant obstacle to the creation of safe and effective ASF vaccines is the existing knowledge gap regarding the pathogenesis of ASFV and its mechanisms of immune evasion. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is a major pathway mediating type I interferon (IFN) antiviral immune response against infections by diverse classes of pathogens that contain DNA or generate DNA in their life cycles. To evade the host's innate immune response, ASFV encodes many proteins that inhibit the production of type I IFN by antagonizing the cGAS-STING signaling pathway. Multiple proteins of ASFV are involved in promoting viral replication by protein-protein interaction during ASFV infection. The protein QP383R could impair the function of cGAS. The proteins EP364R, C129R and B175L could disturb the function of cyclic guanosine monophosphate-adenosine monophosphate (cGAMP). The proteins E248R, L83L, MGF505-11L, MGF505-7R, H240R, CD2v, E184L, B175L and p17 could interfere with the function of STING. The proteins MGF360-11L, MGF505-7R, I215L, DP96R, A151R and S273R could affect the function of TANK Binding Kinase 1 (TBK1) and IκB kinase ε (IKKε). The proteins MGF360-14L, M1249L, E120R, S273R, D129L, E301R, DP96R, MGF505-7R and I226R could inhibit the function of Interferon Regulatory Factor 3 (IRF3). The proteins MGF360-12L, MGF505-7R/A528R, UBCv1 and A238L could inhibit the function of nuclear factor kappa B (NF-Κb).
Collapse
Affiliation(s)
- Can Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (C.L.); (C.Z.); (N.C.); (J.Z.)
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Chenyang Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (C.L.); (C.Z.); (N.C.); (J.Z.)
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (C.L.); (C.Z.); (N.C.); (J.Z.)
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - François Meurens
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (C.L.); (C.Z.); (N.C.); (J.Z.)
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (C.L.); (C.Z.); (N.C.); (J.Z.)
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
7
|
Zhao C, Guo S, Ge S. Epigenetic regulation of cGAS and STING expression in cancer. Int Immunopharmacol 2024; 138:112556. [PMID: 38936059 DOI: 10.1016/j.intimp.2024.112556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Although cancer immunotherapy has become a successful therapeutic strategy in a certain range of solid cancer and hematological malignancies, this efficacy of immunotherapy is impeded by limited success rates due to an immunologically "cold" state. The cGAS-STING signaling pathway is an evolutionarily conserved system which can find cytoplasmic DNA to regulate the innate immune and adaptive immune response. Beyond the host defense and autoimmune disorders, recent advances have now expanded the roles of cGAS-STING that is precise activated and tight regulated to improve anticancer immunity. Mounting evidence now has shown the crucial role of epigenetic regulation in mediating the expression of key genes associated with the cGAS-STING signaling pathway. In this review, we highlight the structure and cellular localization of cGAS and STING as well as intracellular cascade reaction of cGAS-STING signal transduction. We further summarize recent findings of epigenetic regulatory mechanisms that control the expression of cGAS and STING in cancer. The review aims to offer theoretical basis and reference for targeting the epigenetic mechanisms that control cGAS and STING gene expression to promote the development of more effective combination therapeutic regimens to enhance the efficacy of cancer immunotherapy in clinical practice and cancer clinical and cancer research workers.
Collapse
Affiliation(s)
- Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an, China.
| | - Shuwei Guo
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| | - Shiyao Ge
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
8
|
Mendonça LO, Frémond ML. Interferonopathies: From concept to clinical practice. Best Pract Res Clin Rheumatol 2024; 38:101975. [PMID: 39122631 DOI: 10.1016/j.berh.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
The horror autoinflammaticus derived from aberrant type I interferon secretion determines a special group of autoinflammatory diseases named interferonopathies. Diverse mechanisms involved in nucleic acids sensing, metabolizing or the lack of interferon signaling retro-control are responsible for the phenotypes associated to Aicardi-Goutières Syndrome (AGS), Proteasome-Associated Autoinflammatory Diseases (PRAAS), STING-Associated Vasculopathy with Infancy Onset (SAVI) and certain forms of monogenic Systemic lupus erythematosus (SLE). This review approaches interferonopathies from the basic immunogenetic concept to diagnosis and treatment.
Collapse
Affiliation(s)
- Leonardo Oliveira Mendonça
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil; Discipline of Clinical Immunology and Allergy, Department of Internal Medicine, Universidade de Santo Amaro (UNISA), São Paulo, Brazil.
| | - Marie-Louise Frémond
- Department of Paediatric Hematology-Immunology and Rheumatology, Necker-Enfants Malades Hospital, AP-HP, Paris, France; Laboratory of Neurogenetics and Neuroinflammation Imagine Institute, INSERM UMR1163, Paris, France
| |
Collapse
|
9
|
Guo H, Han Y, Yao S, Chen B, Zhao H, Jia J, Chen S, Liu Y, Gao S, Guan H, Lu J, Zhou PK. Decrotonylation of cGAS K254 prompts homologous recombination repair by blocking its DNA binding and releasing PARP1. J Biol Chem 2024; 300:107554. [PMID: 39002667 PMCID: PMC11345394 DOI: 10.1016/j.jbc.2024.107554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor, also exhibits nuclear genomic localization and is involved in DNA damage signaling. In this study, we investigated the impact of cGAS crotonylation on the regulation of the DNA damage response, particularly homologous recombination repair, following exposure to ionizing radiation (IR). Lysine 254 of cGAS is constitutively crotonylated by the CREB-binding protein; however, IR-induced DNA damage triggers sirtuin 3 (SIRT3)-mediated decrotonylation. Lysine 254 decrotonylation decreased the DNA-binding affinity of cGAS and inhibited its interaction with PARP1, promoting homologous recombination repair. Moreover, SIRT3 suppression led to homologous recombination repair inhibition and markedly sensitized cancer cells to IR and DNA-damaging chemicals, highlighting SIRT3 as a potential target for cancer therapy. Overall, this study revealed the crucial role of cGAS crotonylation in the DNA damage response. Furthermore, we propose that modulating cGAS and SIRT3 activities could be potential strategies for cancer therapy.
Collapse
Affiliation(s)
- Hejiang Guo
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yang Han
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shibo Yao
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bijia Chen
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongling Zhao
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jin Jia
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Shi Chen
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China
| | - Yuhao Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shanshan Gao
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China.
| | - Jun Lu
- Department of Medical Oncology, Beijing YouAn Hospital, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China; School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan Province, China.
| |
Collapse
|
10
|
Kulkarni R, Maranholkar V, Nguyen N, Cirino PC, Willson RC, Varadarajan N. The efficient synthesis and purification of 2'3'- cGAMP from Escherichia coli. Front Microbiol 2024; 15:1345617. [PMID: 38525075 PMCID: PMC10957790 DOI: 10.3389/fmicb.2024.1345617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
Agonists of the stimulator of interferon genes (STING) pathway are being explored as potential immunotherapeutics for the treatment of cancer and as vaccine adjuvants for infectious diseases. Although chemical synthesis of 2'3' - cyclic Guanosine Monophosphate-Adenosine Monophosphate (cGAMP) is commercially feasible, the process results in low yields and utilizes organic solvents. To pursue an efficient and environmentally friendly process for the production of cGAMP, we focused on the recombinant production of cGAMP via a whole-cell biocatalysis platform utilizing the murine cyclic Guanosine monophosphate-Adenosine monophosphate synthase (mcGAS). In E. coli BL21(DE3) cells, recombinant expression of mcGAS, a DNA-dependent enzyme, led to the secretion of cGAMP to the supernatants. By evaluating the: (1) media composition, (2) supplementation of divalent cations, (3) temperature of protein expression, and (4) amino acid substitutions pertaining to DNA binding; we showed that the maximum yield of cGAMP in the supernatants was improved by 30% from 146 mg/L to 186 ± 7 mg/mL under optimized conditions. To simplify the downstream processing, we developed and validated a single-step purification process for cGAMP using anion exchange chromatography. The method does not require protein affinity chromatography and it achieved a yield of 60 ± 2 mg/L cGAMP, with <20 EU/mL (<0.3 EU/μg) of endotoxin. Unlike chemical synthesis, our method provides a route for the recombinant production of cGAMP without the need for organic solvents and supports the goal of moving toward shorter, more sustainable, and more environmentally friendly processes.
Collapse
Affiliation(s)
- Rohan Kulkarni
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Vijay Maranholkar
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Nam Nguyen
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Patrick C. Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Richard C. Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
11
|
Chen W, Lee GE, Jeung D, Byun J, Juan W, Cho YY. Cyclic GMP-AMP Synthase in Cancer Prevention. J Cancer Prev 2023; 28:143-196. [PMID: 38205362 PMCID: PMC10774482 DOI: 10.15430/jcp.2023.28.4.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Cyclic GMP-AMP (cGAMP), synthesized by cGAMP synthase (cGAS), serves as a secondary messenger that modulates various cellular processes, including cell proliferation, cell death, immune response, and inflammation. cGAS is activated upon detecting cytoplasmic DNA, which may originate from damaged genomic and mitochondrial DNA or from viral and bacterial infections. The presence of DNA in the cytoplasm can trigger a substantial inflammatory reaction and cytokine production via the cGAS-STING signaling pathway. Consequently, specific inhibitors targeting this pathway hold significant potential as chemopreventive agents. In this review, we explore the potential effectiveness of modulating cGAS activity. We discuss the role of cGAMP, the mechanism of action for distinguishing between self and foreign DNA, and the possible functions of cGAS within the nucleus.
Collapse
Affiliation(s)
- Weidong Chen
- BK21-Four, College of Pharmacy, The Catholic University of Korea
- RCD Control Material Research Institute, The Catholic University of Korea, Bucheon, Korea
| | - Ga-Eun Lee
- BK21-Four, College of Pharmacy, The Catholic University of Korea
- RCD Control Material Research Institute, The Catholic University of Korea, Bucheon, Korea
| | - Dohyun Jeung
- BK21-Four, College of Pharmacy, The Catholic University of Korea
- RCD Control Material Research Institute, The Catholic University of Korea, Bucheon, Korea
| | - Jiin Byun
- BK21-Four, College of Pharmacy, The Catholic University of Korea
- RCD Control Material Research Institute, The Catholic University of Korea, Bucheon, Korea
| | - Wu Juan
- BK21-Four, College of Pharmacy, The Catholic University of Korea
- RCD Control Material Research Institute, The Catholic University of Korea, Bucheon, Korea
| | - Yong-Yeon Cho
- BK21-Four, College of Pharmacy, The Catholic University of Korea
- RCD Control Material Research Institute, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
12
|
Zheng W, Chen N, Meurens F, Zheng W, Zhu J. How Does cGAS Avoid Sensing Self-DNA under Normal Physiological Conditions? Int J Mol Sci 2023; 24:14738. [PMID: 37834184 PMCID: PMC10572901 DOI: 10.3390/ijms241914738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
cGAS is a cytosolic DNA sensor that activates innate immune responses by producing the second messenger 2'3'-cGAMP, which activates the adaptor STING. cGAS senses dsDNA in a length-dependent but sequence-independent manner, meaning it cannot discriminate self-DNA from foreign DNA. In normal physiological conditions, cellular DNA is sequestered in the nucleus by a nuclear envelope and in mitochondria by a mitochondrial membrane. When self-DNA leaks into the cytosol during cellular stress or mitosis, the cGAS can be exposed to self-DNA and activated. Recently, many studies have investigated how cGAS keeps inactive and avoids being aberrantly activated by self-DNA. Thus, this narrative review aims to summarize the mechanisms by which cGAS avoids sensing self-DNA under normal physiological conditions.
Collapse
Affiliation(s)
- Wangli Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Nanhua Chen
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - François Meurens
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, St. Hyacinthe, QC J2S 2M2, Canada;
- Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Wanglong Zheng
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianzhong Zhu
- College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (W.Z.); (N.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
13
|
Wheeler OPG, Unterholzner L. DNA sensing in cancer: Pro-tumour and anti-tumour functions of cGAS-STING signalling. Essays Biochem 2023; 67:905-918. [PMID: 37534795 PMCID: PMC10539950 DOI: 10.1042/ebc20220241] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The DNA sensor cGAS (cyclic GMP-AMP synthase) and its adaptor protein STING (Stimulator of Interferon Genes) detect the presence of cytosolic DNA as a sign of infection or damage. In cancer cells, this pathway can be activated through persistent DNA damage and chromosomal instability, which results in the formation of micronuclei and the exposure of DNA fragments to the cytosol. DNA damage from radio- or chemotherapy can further activate DNA sensing responses, which may occur in the cancer cells themselves or in stromal and immune cells in the tumour microenvironment (TME). cGAS-STING signalling results in the production of type I interferons, which have been linked to immune cell infiltration in 'hot' tumours that are susceptible to immunosurveillance and immunotherapy approaches. However, recent research has highlighted the complex nature of STING signalling, with tumours having developed mechanisms to evade and hijack this signalling pathway for their own benefit. In this mini-review we will explore how cGAS-STING signalling in different cells in the TME can promote both anti-tumour and pro-tumour responses. This includes the role of type I interferons and the second messenger cGAMP in the TME, and the influence of STING signalling on local immune cell populations. We examine how alternative signalling cascades downstream of STING can promote chronic interferon signalling, the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the production of inflammatory cytokines, which can have pro-tumour functions. An in-depth understanding of DNA sensing in different cell contexts will be required to harness the anti-tumour functions of STING signalling.
Collapse
Affiliation(s)
- Otto P G Wheeler
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, U.K
| | - Leonie Unterholzner
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, U.K
| |
Collapse
|
14
|
Chauhan C, Kaundal RK. Understanding the role of cGAS-STING signaling in ischemic stroke: a new avenue for drug discovery. Expert Opin Drug Discov 2023; 18:1133-1149. [PMID: 37537969 DOI: 10.1080/17460441.2023.2244409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Ischemic stroke is a significant global health challenge with limited treatment options. Neuroinflammation, driven by microglial activation, plays a critical role in stroke pathophysiology. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a key player in microglial activation, sterile neuroinflammation, and cell death following stroke. Understanding the interplay between this pathway and stroke pathophysiology is crucial for exploring newer therapeutics for stroke patients. AREAS COVERED This review discusses the pivotal role of the cGAS-STING pathway in ischemic stroke. It explores the interplay between cGAS-STING activation, neuroinflammation, microglia activation, M2 polarization, neutrophil infiltration, and cytokine release. Additionally, the authors examine its contributions to various cell death programs (pyroptosis, apoptosis, necroptosis, lysosomal cell death, autophagy, and ferroptosis). The review summarizes recent studies on targeting cGAS-STING signaling in stroke, highlighting the therapeutic potential of small molecule inhibitors and RNA-based approaches in mitigating neuroinflammation, preventing cell death, and improving patient outcomes. EXPERT OPINION Understanding cGAS-STING signaling in ischemic stroke offers an exciting avenue for drug discovery. Targeting this pathway holds promise for developing novel therapeutics that effectively mitigate neuroinflammation, prevent cell death, and enhance patient outcomes. Further research and development of therapeutic strategies are warranted to fully exploit the potential of this pathway as a therapeutic target for stroke.
Collapse
Affiliation(s)
- Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| | - Ravinder Kumar Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, India
| |
Collapse
|
15
|
Hao S, Zheng X, Zhu Y, Yao Y, Li S, Xu Y, Feng WH. African swine fever virus QP383R dampens type I interferon production by promoting cGAS palmitoylation. Front Immunol 2023; 14:1186916. [PMID: 37228597 PMCID: PMC10203406 DOI: 10.3389/fimmu.2023.1186916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) recognizes viral DNA and synthesizes cyclic GMP-AMP (cGAMP), which activates stimulator of interferon genes (STING/MITA) and downstream mediators to elicit an innate immune response. African swine fever virus (ASFV) proteins can antagonize host immune responses to promote its infection. Here, we identified ASFV protein QP383R as an inhibitor of cGAS. Specifically, we found that overexpression of QP383R suppressed type I interferons (IFNs) activation stimulated by dsDNA and cGAS/STING, resulting in decreased transcription of IFNβ and downstream proinflammatory cytokines. In addition, we showed that QP383R interacted directly with cGAS and promoted cGAS palmitoylation. Moreover, we demonstrated that QP383R suppressed DNA binding and cGAS dimerization, thus inhibiting cGAS enzymatic functions and reducing cGAMP production. Finally, the truncation mutation analysis indicated that the 284-383aa of QP383R inhibited IFNβ production. Considering these results collectively, we conclude that QP383R can antagonize host innate immune response to ASFV by targeting the core component cGAS in cGAS-STING signaling pathways, an important viral strategy to evade this innate immune sensor.
Collapse
Affiliation(s)
- Siyuan Hao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaojie Zheng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yingqi Zhu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yao Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sihan Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yangyang Xu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen-hai Feng
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|