1
|
Yu B, Sopic M, Sluimer JC. Single-cell RNA sequencing (scRNA-seq) and its insights into cellular heterogeneity in atherosclerosis. Vascul Pharmacol 2025; 159:107499. [PMID: 40345606 DOI: 10.1016/j.vph.2025.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cellular diversity in human biology, providing novel insights into disease mechanisms. In cardiovascular disease (CVD), scRNA-seq enables precise mapping of complex cell populations, uncovering unique cell types and states that influence disease progression and suggest new therapeutic targets. In atherosclerosis (AS), scRNA-seq has redefined plaque pathology by identifying distinct cell types, including endothelial cells (ECs), smooth muscle cells (SMCs), fibroblasts, macrophages, T cells, and B cells, each with specific roles in plaque stability, inflammation, and disease progression. In our review, we summarized these major cellular populations and their cellular heterogeneity in non-diseased and atherosclerotic aorta, as identified by scRNA-seq in mice and human tissues. We discussed conserved and species-specific subpopulations, their defining markers, and their functional implications in plaque progression. In addition, we integrated findings from scRNA-seq with experimental studies to highlight key molecular targets with therapeutic potential. In the future, these insights offer a refined cellular and molecular framework of atherosclerosis and may help the development of targeted interventions to promote plaque stabilization and reduce cardiovascular risk.
Collapse
Affiliation(s)
- Baixue Yu
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands.
| | - Miron Sopic
- Cardiovascular Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg; Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia.
| | - Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands; Aachen Maastricht Institute for CardioRenal research (AMICARE), 52074 Aachen, Germany; British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
2
|
Ya X, Liu C, Ma L, Ge P, Xu X, Zheng Z, Mou S, Wang R, Zhang Q, Ye X, Zhang D, Zhang Y, Wang W, Li H, Zhao J. Single-cell atlas of peripheral blood by CyTOF revealed peripheral blood immune cells metabolic alterations and neutrophil changes in intracranial aneurysm rupture. MedComm (Beijing) 2024; 5:e637. [PMID: 39015556 PMCID: PMC11247334 DOI: 10.1002/mco2.637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/12/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024] Open
Abstract
Previous studies have found that the peripheral immune environment is closely related to the occurrence and development of intracranial aneurysms. However, it remains unclear how the metabolism of peripheral blood mononuclear cells (PBMCs) and the composition of polymorphonuclear leukocytes (PMNs) changes in the process of intracranial aneurysm rupture. This study utilized cytometry by time of flight technology to conduct single-cell profiling analysis of PBMCs and PMNs from 72 patients with IAs. By comparing the expression differences of key metabolic enzymes in PBMCs between patients with ruptured intracranial aneurysms (RIAs) and unruptured intracranial aneurysms, we found that most PBMCs subsets from RIA group showed upregulation of rate-limiting enzymes related to the glycolytic pathway. By comparing the composition of PMNs, it was found that the proinflammatory CD101+HLA DR+ subsets were increased in the RIA group, accompanied by a decrease in the anti-inflammatory polymorphonuclear myeloid-derived suppressor cells. In conclusion, this study showed the changes in the peripheral immune profile of RIAs, which is helpful for our understanding of the mechanisms underlying peripheral changes and provides a direction for future related research.
Collapse
Affiliation(s)
- Xiaolong Ya
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Long Ma
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xiaoxue Xu
- Department of Core Facility CenterCapital Medical UniversityBeijingChina
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Siqi Mou
- Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing HospitalBeijingChina
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn HospitalCapital Medical UniversityBeijingChina
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
3
|
Ya X, Ma L, Liu C, Ge P, Xu Y, Zheng Z, Mou S, Wang R, Zhang Q, Ye X, Zhang D, Zhang Y, Wang W, Li H, Zhao J. Metabolic alterations of peripheral blood immune cells and heterogeneity of neutrophil in intracranial aneurysms patients. Clin Transl Med 2024; 14:e1572. [PMID: 38314932 PMCID: PMC10840020 DOI: 10.1002/ctm2.1572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Intracranial aneurysms (IAs) represent a severe cerebrovascular disease that can potentially lead to subarachnoid haemorrhage. Previous studies have demonstrated the involvement of peripheral immune cells in the formation and progression of IAs. Nevertheless, the impact of metabolic alterations in peripheral immune cells and changes in neutrophil heterogeneity on the occurrence and progression of IAs remains uncertain. METHODS Single-cell Cytometry by Time-of-Flight (CyTOF) technology was employed to profile the single-cell atlas of peripheral blood mononuclear cells (PBMCs) and polymorphonuclear cells (PMNs) in 72 patients with IAs. In a matched cohort, metabolic shifts in PBMC subsets of IA patients were investigated by contrasting the expression levels of key metabolic enzymes with their respective counterparts in the healthy control group. Simultaneously, compositional differences in peripheral blood PMNs subsets between the two groups were analysed to explore the impact of altered heterogeneity in neutrophils on the initiation and progression of IAs. Furthermore, integrating immune features based on CyTOF analysis and clinical characteristics, we constructed an aneurysm occurrence model and an aneurysm growth model using the random forest method in conjunction with LASSO regression. RESULTS Different subsets exhibited distinct metabolic characteristics. Overall, PBMCs from patients elevated CD98 expression and increased proliferation. Conversely, CD36 was up-regulated in T cells, B cells and monocytes from the controls but down-regulated in NK and NKT cells. The comparison also revealed differences in the metabolism and function of specific subsets between the two groups. In terms of PMNs, the neutrophil landscape within patients group revealed a pronounced shift towards heightened complexity. Various neutrophil subsets from the IA group generally exhibited lower expression levels of anti-inflammatory functional molecules (IL-4 and IL-10). By integrating clinical and immune features, the constructed aneurysm occurrence model could precisely identify patients with IAs with high prediction accuracy (AUC = 0.987). Furthermore, the aneurysm growth model also exhibited superiority over ELAPSS scores in predicting aneurysm growth (lower prediction errors and out-of-bag errors). CONCLUSION These findings enhanced our understanding of peripheral immune cell participation in aneurysm formation and growth from the perspectives of immune metabolism and neutrophil heterogeneity. Moreover, the predictive model based on CyTOF features holds the potential to aid in diagnosing and monitoring the progression of human IAs.
Collapse
Affiliation(s)
- Xiaolong Ya
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Long Ma
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Chenglong Liu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Peicong Ge
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yiqiao Xu
- School of Clinical MedicineCapital Medical UniversityBeijingChina
| | - Zhiyao Zheng
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of NeurosurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Siqi Mou
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Rong Wang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Qian Zhang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xun Ye
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Dong Zhang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing HospitalBeijingChina
| | - Yan Zhang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenjing Wang
- Beijing Institute of HepatologyBeijing YouAn HospitalCapital Medical UniversityBeijingChina
| | - Hao Li
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jizong Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
4
|
Baaten CCFMJ, Nagy M, Bergmeier W, Spronk HMH, van der Meijden PEJ. Platelet biology and function: plaque erosion vs. rupture. Eur Heart J 2024; 45:18-31. [PMID: 37940193 PMCID: PMC10757869 DOI: 10.1093/eurheartj/ehad720] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/20/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
The leading cause of heart disease in developed countries is coronary atherosclerosis, which is not simply a result of ageing but a chronic inflammatory process that can lead to acute clinical events upon atherosclerotic plaque rupture or erosion and arterial thrombus formation. The composition and location of atherosclerotic plaques determine the phenotype of the lesion and whether it is more likely to rupture or to erode. Although plaque rupture and erosion both initiate platelet activation on the exposed vascular surface, the contribution of platelets to thrombus formation differs between the two phenotypes. In this review, plaque phenotype is discussed in relation to thrombus composition, and an overview of important mediators (haemodynamics, matrix components, and soluble factors) in plaque-induced platelet activation is given. As thrombus formation on disrupted plaques does not necessarily result in complete vessel occlusion, plaque healing can occur. Therefore, the latest findings on plaque healing and the potential role of platelets in this process are summarized. Finally, the clinical need for more effective antithrombotic agents is highlighted.
Collapse
Affiliation(s)
- Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, School of Medicine, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
- Blood Research Center, School of Medicine, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA
| | - Henri M H Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
- Thrombosis Expertise Center, Heart+ Vascular Center, Maastricht University Medical Center+, P. Debeyelaan 25, Maastricht, the Netherlands
| | - Paola E J van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- Thrombosis Expertise Center, Heart+ Vascular Center, Maastricht University Medical Center+, P. Debeyelaan 25, Maastricht, the Netherlands
| |
Collapse
|
5
|
Jia YH, Dong YB, Jiang HY, Li AJ. Effects of herpes zoster vaccination and antiviral treatment on the risk of stroke: a systematic review and meta-analysis. Front Neurol 2023; 14:1176920. [PMID: 37265460 PMCID: PMC10231675 DOI: 10.3389/fneur.2023.1176920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Background Evidence suggests that there is an increased risk of stroke after herpes zoster (HZ). However, reports on the effects of HZ vaccination (HZV) and antiviral treatment on stroke risk are inconsistent. Thus, we examined these associations in a meta-analysis. Methods To identify relevant studies, we searched three databases for articles published up to January 2023. Random-effect models were examined to determine overall pooled estimates and 95% confidence intervals (CIs). Results This review included 12 observational studies (six on HZV and seven on antiviral treatment). When comparing vaccinated and unvaccinated patients, vaccination was found to be associated with a lower risk of stroke (OR, 0.78; 95% CI 0.68-0.9; P = 0.001). A meta-analysis of self-controlled case series (SCCS) revealed evidence of a reduced OR in individuals who received the vaccine (OR, 1.14; 95% CI 0.94-1.37; P = 0.181) compared with unvaccinated individuals (OR, 1.36; 95% CI 1.15-1.61; P < 0.001). Compared with untreated patients, antiviral therapy was not associated with a reduced risk of stroke (OR, 1.13; 95% CI 0.94-1.36; P = 0.201). The meta-analysis of the SCCS showed no evidence of a reduced OR in individuals who received antiviral therapy (OR, 1.33; 95% CI 1.17-1.51; P < 0.001) compared to untreated individuals (OR, 1.45; 95% CI 1.25-1.69; P < 0.001). Conclusions This meta-analysis suggests that the HZV, but not antiviral treatment, decreases the odds of developing stroke.
Collapse
Affiliation(s)
- Yong-Hui Jia
- Pharmacy Department, The 960th Hospital of PLA, Jinan, China
| | - Yu-Bo Dong
- Pharmacy Department, The 960th Hospital of PLA, Jinan, China
| | - Hai-Yin Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ai-Juan Li
- Pharmacy Department, The 960th Hospital of PLA, Jinan, China
| |
Collapse
|