1
|
Jiménez-Cortegana C, Palomares F, Alba G, Santa-María C, de la Cruz-Merino L, Sánchez-Margalet V, López-Enríquez S. Dendritic cells: the yin and yang in disease progression. Front Immunol 2024; 14:1321051. [PMID: 38239364 PMCID: PMC10794555 DOI: 10.3389/fimmu.2023.1321051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Dendritic cells (DCs) are antigen presenting cells that link innate and adaptive immunity. DCs have been historically considered as the most effective and potent cell population to capture, process and present antigens to activate naïve T cells and originate favorable immune responses in many diseases, such as cancer. However, in the last decades, it has been observed that DCs not only promote beneficial responses, but also drive the initiation and progression of some pathologies, including inflammatory bowel disease (IBD). In line with those notions, different therapeutic approaches have been tested to enhance or impair the concentration and role of the different DC subsets. The blockade of inhibitory pathways to promote DCs or DC-based vaccines have been successfully assessed in cancer, whereas the targeting of DCs to inhibit their functionality has proved to be favorable in IBD. In this review, we (a) described the general role of DCs, (b) explained the DC subsets and their role in immunogenicity, (c) analyzed the role of DCs in cancer and therapeutic approaches to promote immunogenic DCs and (d) analyzed the role of DCs in IBD and therapeutic approaches to reduced DC-induced inflammation. Therefore, we aimed to highlight the "yin-yang" role of DCs to improve the understand of this type of cells in disease progression.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Gonzalo Alba
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Consuelo Santa-María
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Clinical Oncology Dept. Medicine Department, University of Seville, Virgen Macarena University Hospital, Seville, Spain
| | - Victor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Soledad López-Enríquez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
2
|
Brasal-Prieto M, Fernández-Prades L, Dakhaoui H, Sobrino F, López-Enríquez S, Palomares F. Update on In Vitro Diagnostic Tools and Treatments for Food Allergies. Nutrients 2023; 15:3744. [PMID: 37686776 PMCID: PMC10489659 DOI: 10.3390/nu15173744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Food allergy (FA) is an adverse immunological reaction to a specific food that can trigger a wide range of symptoms from mild to life-threatening. This adverse reaction is caused by different immunological mechanisms, such as IgE-mediated, non-IgE-mediated and mixed IgE-mediated reactions. Its epidemiology has had a significant increase in the last decade, more so in developed countries. It is estimated that approximately 2 to 10% of the world's population has FA and this number appears to be increasing and also affecting more children. The diagnosis can be complex and requires the combination of different tests to establish an accurate diagnosis. However, the treatment of FA is based on avoiding the intake of the specific allergenic food, thus being very difficult at times and also controlling the symptoms in case of accidental exposure. Currently, there are other immunomodulatory treatments such as specific allergen immunotherapy or more innovative treatments that can induce a tolerance response. It is important to mention that research in this field is ongoing and clinical trials are underway to assess the safety and efficacy of these different immunotherapy approaches, new treatment pathways are being used to target and promote the tolerance response. In this review, we describe the new in vitro diagnostic tools and therapeutic treatments to show the latest advances in FA management. We conclude that although significant advances have been made to improve therapies and diagnostic tools for FA, there is an urgent need to standardize both so that, in their totality, they help to improve the management of FA.
Collapse
|
3
|
Núñez R, Rodríguez MJ, Lebrón-Martín C, Martín-Astorga MDC, Ramos-Soriano J, Rojo J, Torres MJ, Cañas JA, Mayorga C. A synthetic glycodendropeptide induces methylation changes on regulatory T cells linked to tolerant responses in anaphylactic-mice. Front Immunol 2023; 14:1165852. [PMID: 37334360 PMCID: PMC10272618 DOI: 10.3389/fimmu.2023.1165852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Lipid transfer proteins (LTPs) are allergens found in a wide range of plant-foods. Specifically, Pru p 3, the major allergen of peach, is commonly responsible for severe allergic reactions. The need for new alternatives to conventional food allergy treatments, like restrictive diets, suggests allergen immunotherapy as a promising option. It has been demonstrated that sublingual immunotherapy (SLIT) with synthetic glycodendropeptides, such as D1ManPrup3, containing mannose and Pru p 3 peptides induced tolerance in mice and that the persistence of this effect depends on treatment dose (2nM or 5nM). Moreover, it produces changes associated with differential gene expression and methylation profile of dendritic cells, as well as phenotypical changes in regulatory T cells (Treg). However, there are no works addressing the study of epigenetic changes in terms of methylation in the cell subsets that sustain tolerant responses, Treg. Therefore, in this work, DNA methylation changes in splenic-Treg from Pru p 3 anaphylactic mice were evaluated. Methods It was performed by whole genome bisulphite sequencing comparing SLIT-D1ManPrup3 treated mice: tolerant (2nM D1ManPrup3), desensitized (5nM D1ManPrup3), and sensitized but not treated (antigen-only), with anaphylactic mice. Results Most of the methylation changes were found in the gene promoters from both SLIT-treated groups, desensitized (1,580) and tolerant (1,576), followed by the antigen-only (1,151) group. Although tolerant and desensitized mice showed a similar number of methylation changes, only 445 genes were shared in both. Remarkably, interesting methylation changes were observed on the promoter regions of critical transcription factors for Treg function like Stat4, Stat5a, Stat5b, Foxp3, and Gata3. In fact, Foxp3 was observed exclusively as hypomethylated in tolerant group, whereas Gata3 was only hypomethylated in the desensitized mice. Discussion In conclusion, diverse D1ManPrup3 doses induce different responses (tolerance or desensitization) in mice, which are reflected by differential methylation changes in Tregs.
Collapse
Affiliation(s)
- Rafael Núñez
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Málaga, Spain
| | - María J. Rodríguez
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Málaga, Spain
| | - Clara Lebrón-Martín
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Málaga, Spain
| | - María del Carmen Martín-Astorga
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Málaga, Spain
- Department of Medicine, Universidad de Málaga (UMA), Málaga, Spain
| | - Javier Ramos-Soriano
- Laboratory of Glycosystems, Institute of Chemical Research (IIQ), Centro Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla, Sevilla, Spain
| | - Javier Rojo
- Laboratory of Glycosystems, Institute of Chemical Research (IIQ), Centro Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla, Sevilla, Spain
| | - María J. Torres
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Málaga, Spain
- Department of Medicine, Universidad de Málaga (UMA), Málaga, Spain
- Clinical Unit of Allergy, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - José A. Cañas
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Málaga, Spain
| | - Cristobalina Mayorga
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Málaga, Spain
- Clinical Unit of Allergy, Hospital Regional Universitario de Málaga, Málaga, Spain
| |
Collapse
|