1
|
Rodriguez S, Couloume L, Ferrant J, Vince N, Mandon M, Jean R, Monvoisin C, Leonard S, Le Gallou S, Silva NSB, Bourguiba-Hachemi S, Laplaud D, Garcia A, Casey R, Zephir H, Kerbrat A, Edan G, Lepage E, Thouvenot E, Ruet A, Mathey G, Gourraud PA, Tarte K, Delaloy C, Amé P, Roussel M, Michel L. Blood immunophenotyping of multiple sclerosis patients at diagnosis identifies a classical monocyte subset associated to disease evolution. Front Immunol 2025; 15:1494842. [PMID: 39845960 PMCID: PMC11751469 DOI: 10.3389/fimmu.2024.1494842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Myeloid cells trafficking from the periphery to the central nervous system are key players in multiple sclerosis (MS) through antigen presentation, cytokine secretion and repair processes. Methods Combination of mass cytometry on blood cells from 60 MS patients at diagnosis and 29 healthy controls, along with single cell RNA sequencing on paired blood and cerebrospinal fluid (CSF) samples from 5 MS patients were used for myeloid cells detailing. Results Myeloid compartment study demonstrated an enrichment of a peculiar classical monocyte population in 22% of MS patients at the time of diagnosis. Notably, this patients' subgroup exhibited a more aggressive disease phenotype two years post-diagnosis. This monocytic population, detected in both the CSF and blood, was characterized by CD206, CD209, CCR5 and CCR2 expression, and was found to be more frequent in MS patients carrying the HLA-DRB1*15:01 allele. Furthermore, pathways analysis predicted that these cells had antigen presentation capabilities coupled with pro-inflammatory phenotype. Discussion Altogether, these results point toward the amplification of a specific and pathogenic myeloid cell subset in MS patients with genetic susceptibilities.
Collapse
Affiliation(s)
- Stéphane Rodriguez
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Laura Couloume
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Juliette Ferrant
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Nicolas Vince
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Marion Mandon
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Rachel Jean
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Celine Monvoisin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Simon Leonard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Simon Le Gallou
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Nayane S. B. Silva
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- São Paulo State University, Molecular Genetics and Bioinformatics Laboratory, School of Medicine, Botucatu, Brazil
| | - Sonia Bourguiba-Hachemi
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - David Laplaud
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- Service de Neurologie, Centre Hospitalier Universitaire (CHU) Nantes, CRC-SEP Pays de la Loire, CIC 1413, Nantes, France
| | - Alexandra Garcia
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
| | - Romain Casey
- Lyon University, University Claude Bernard Lyon 1, Lyon, France
- Hospices Civils de Lyon, Neurology Department, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Bron, France
- Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de Lyon, INSERM 1028 and CNRS UMR 5292, Lyon, France
- EUGENE DEVIC EDMUS Foundation against Multiple Sclerosis, State-Approved Foundation, Bron, France
| | - Helene Zephir
- Lille University, Inserm U1172, Lille University Hospital, Lille, France
| | - Anne Kerbrat
- Neurology Department, Rennes Clinical Investigation Centre, Rennes University Hospital-Rennes University-Institut National de la Santé et de la Recherche Médicale (INSERM), Rennes, France
| | - Gilles Edan
- Neurology Department, Rennes Clinical Investigation Centre, Rennes University Hospital-Rennes University-Institut National de la Santé et de la Recherche Médicale (INSERM), Rennes, France
| | - Emmanuelle Lepage
- Neurology Department, Rennes Clinical Investigation Centre, Rennes University Hospital-Rennes University-Institut National de la Santé et de la Recherche Médicale (INSERM), Rennes, France
| | - Eric Thouvenot
- Department of Neurology, Nimes University Hospital, Nimes, France
- Institut de Génomique Fonctionnelle, UMR5203, Inserm 1191, Université de Montpellier, Montpellier, France
| | - Aurelie Ruet
- Neurocentre Magendie, Institut National de la Santé et de la Recherche Médicale (INSERM) U1215, Bordeaux, France
- CHU de Bordeaux, Department of Neurology, Bordeaux, France
| | - Guillaume Mathey
- Department of Neurology, Nancy University Hospital, Nancy, France
- Université de Lorraine, Inserm, INSPIIRE, Nancy, France
| | - Pierre-Antoine Gourraud
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, Nantes University, Center for Research in Transplantation and Translational Immunology, UMR 1064, Nantes, France
- Service de Neurologie, Centre Hospitalier Universitaire (CHU) Nantes, CRC-SEP Pays de la Loire, CIC 1413, Nantes, France
| | - Karin Tarte
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Celine Delaloy
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
| | - Patricia Amé
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Mikael Roussel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
| | - Laure Michel
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche U1236, Université Rennes, Etablissement Français du Sang Bretagne, LabEx IGO, Rennes, France
- Pole Biologie-Centre Hospitalier Universitaire (CHU) Rennes, Rennes, France
- Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de Lyon, INSERM 1028 and CNRS UMR 5292, Lyon, France
| |
Collapse
|
2
|
Turčić A, Knežević J, Zaninović L, Habek M, Skorić MK, Babić A, Vogrinc Ž. Association between peripheral blood immunological status and intrathecal inflammatory markers differentiate multiple sclerosis clinical phenotypes. Acta Neurol Belg 2024:10.1007/s13760-024-02597-8. [PMID: 39095573 DOI: 10.1007/s13760-024-02597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The difference in the clinical course, response to therapy, and distribution of CNS inflammation in primary-progressive (PPMS) and relapsing-remitting multiple sclerosis (RRMS) suggests differences in the underlying immunological characteristics of the disease. We aimed to investigate differences in immunological profiles in relation to intrathecal inflammation in different MS forms. METHODS The peripheral blood (PB) proportions of CD4 + and CD8 + T-cells and CD19 + B-cells were retrospectively compared with the markers of intrathecal immunoglobulin G (IgG) synthesis at diagnosis: IgG index, percentage of intrathecal IgG synthesis (IF IgG), the number of oligoclonal bands (OCB), depending on the blood-brain barrier (BBB) function, and antibody specific index to neurotrophic viruses (MRZH reaction). RESULTS Thirty-six controls, 71 RRMS and 25 PPMS were enrolled. PPMS had higher percentage of CD4 + T-cells compared to RRMS (P = 0.043) and controls (P = 0.003). The percentage of CD8 + T-cells and CD19 + B-cells, and respective absolute cell counts did not differ according to the MS phenotype. In RRMS with the dysfunctional BBB, the IgG index (r = 0.642, P = 0.012) correlated significantly with the CD19 + B-cells while the CD4 + T-cells inversely correlated with IF IgG (r=-0.574, P = 0.039). Interestingly, in PPMS the number of OCB was positively associated with CD4+ (r = 0.603, P = 0.015) and negatively associated with CD8 + T-cells (r=-0.554, P = 0.033), while IF IgG negatively correlated with CD8 + T-cells (r=-0.689, P = 0.003), but only in the preserved BBB function. CONCLUSIONS The PB CD4 + T-cells and B-cells were associated with the intrathecal inflammation in RRMS with BBB dysfunction while CD8 + T-cells were involved in PPMS with CNS-compartmentalized inflammation.
Collapse
Affiliation(s)
- Ana Turčić
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, HR-10 000, Croatia.
| | - Josip Knežević
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, HR-10 000, Croatia
| | - Ljiljana Zaninović
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, HR-10 000, Croatia
| | - Mario Habek
- Department of Neurology, University of Zagreb School of Medicine, Zagreb, Croatia
- Referral Center for Autonomic Nervous System Disorders, Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Magdalena Krbot Skorić
- Referral Center for Autonomic Nervous System Disorders, Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Antonija Babić
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, HR-10 000, Croatia
| | - Željka Vogrinc
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, HR-10 000, Croatia
| |
Collapse
|
3
|
Arneth B. Current Knowledge about Nonclassical Monocytes in Patients with Multiple Sclerosis, a Systematic Review. Int J Mol Sci 2024; 25:7372. [PMID: 39000478 PMCID: PMC11242477 DOI: 10.3390/ijms25137372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Monocytes play a critical role in the initiation and progression of multiple sclerosis (MS). Recent research indicates the importance of considering the roles of monocytes in the management of MS and the development of effective interventions. This systematic review examined published research on the roles of nonclassical monocytes in MS and how they influence disease management. Reputable databases, such as PubMed, EMBASE, Cochrane, and Google Scholar, were searched for relevant studies on the influence of monocytes on MS. The search focused on studies on humans and patients with experimental autoimmune encephalomyelitis (EAE) published between 2014 and 2024 to provide insights into the study topic. Fourteen articles that examined the role of monocytes in MS were identified; the findings reported in these articles revealed that nonclassical monocytes could act as MS biomarkers, aid in the development of therapeutic interventions, reveal disease pathology, and improve approaches for monitoring disease progression. This review provides support for the consideration of monocytes when researching effective diagnostics, therapeutic interventions, and procedures for managing MS pathophysiology. These findings may guide future research aimed at gaining further insights into the role of monocytes in MS.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Hospital of the Universities of Giessen and Marburg, UKGM, Philipps University Marburg, Baldingerst 1, 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Hospital of the Universities of Giessen and Marburg, UKGM, Justus Liebig University Giessen, Feulgenstr 12, 35392 Giessen, Germany
| |
Collapse
|
4
|
Taha SI, Mohamed HG, Mamdouh R, Kamal NE, Khater SS. A pilot study of monocytes in relapsing remitting multiple sclerosis: Correlation with disease activity. Innate Immun 2024; 30:90-95. [PMID: 39094574 PMCID: PMC11418594 DOI: 10.1177/17534259241269674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/08/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Background: Numerous immune cells are involved in developing multiple sclerosis (MS). Monocytes are believed to be the first to enter the brain and initiate inflammation. The role of monocyte subtypes in MS needs to be better understood. Objective: The current study aims to investigate the presence of different subsets of monocytes in relapsing-remitting MS (RRMS) Egyptian patients and their correlation with disease activity. Methods: This study included 44 RRMS patients (22 patients in relapse, 22 patients in remission), diagnosed according to the 2017 MacDonalds criteria, and 44 matched healthy controls. Personal and medical histories were taken from the patients, and the Expanded Disability Status Scale (EDSS) was used to evaluate the degree of impairment. Characterization of peripheral blood monocyte subsets was done by flow cytometry for all participants. Results: The percentage of classical, intermediate, and non-classical monocyte subsets showed a significant increase in RRMS patients than controls with p-values of 0.029, 0.049, and 0.043, respectively. In the RRMS patients, there were no statistically significant correlations (p-values >0.05) between the EDSS scores, the duration of disease, and number of relapses in the past year and the percentages of the various monocyte subsets. Furthermore, there were no significant differences in the percentage of each monocyte subset between RRMS patients in remission and those experiencing a relapse (p-values >0.05). However, patients with evidence of activity in magnetic resonance imaging (MRI) had a significantly high percentage of non-classical monocytes with a p-value of 0.002. Conclusion: In RRMS patients, the three monocyte subsets (classical, non-classical and intermediate) increase significantly regardless of the disease activity. This increase denotes the vital role of monocytes and innate immunity in MS pathology, especially the non-classical monocyte subset. These findings suggest that monocytes might be a promising MS therapeutic target.
Collapse
Affiliation(s)
- Sara I Taha
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala Ghareeb Mohamed
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Rasha Mamdouh
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nada E Kamal
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Shaimaa Sayed Khater
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Jiang Q, Duan J, Van Kaer L, Yang G. The Role of Myeloid-Derived Suppressor Cells in Multiple Sclerosis and Its Animal Model. Aging Dis 2024; 15:1329-1343. [PMID: 37307825 PMCID: PMC11081146 DOI: 10.14336/ad.2023.0323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/23/2023] [Indexed: 06/14/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), a heterogeneous cell population that consists of mostly immature myeloid cells, are immunoregulatory cells mainly characterized by their suppressive functions. Emerging findings have revealed the involvement of MDSCs in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). MS is an autoimmune and degenerative disease of the central nervous system characterized by demyelination, axon loss, and inflammation. Studies have reported accumulation of MDSCs in inflamed tissues and lymphoid organs of MS patients and EAE mice, and these cells display dual functions in EAE. However, the contribution of MDSCs to MS/EAE pathogenesis remains unclear. This review aims to summarize our current understanding of MDSC subsets and their possible roles in MS/EAE pathogenesis. We also discuss the potential utility and associated obstacles in employing MDSCs as biomarkers and cell-based therapies for MS.
Collapse
Affiliation(s)
- Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Jielin Duan
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
6
|
Tamberi L, Belloni A, Pugnaloni A, Rippo MR, Olivieri F, Procopio AD, Bronte G. The Influence of Myeloid-Derived Suppressor Cell Expansion in Neuroinflammation and Neurodegenerative Diseases. Cells 2024; 13:643. [PMID: 38607083 PMCID: PMC11011419 DOI: 10.3390/cells13070643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
The neuro-immune axis has a crucial function both during physiological and pathological conditions. Among the immune cells, myeloid-derived suppressor cells (MDSCs) exert a pivotal role in regulating the immune response in many pathological conditions, influencing neuroinflammation and neurodegenerative disease progression. In chronic neuroinflammation, MDSCs could lead to exacerbation of the inflammatory state and eventually participate in the impairment of cognitive functions. To have a complete overview of the role of MDSCs in neurodegenerative diseases, research on PubMed for articles using a combination of terms made with Boolean operators was performed. According to the search strategy, 80 papers were retrieved. Among these, 44 papers met the eligibility criteria. The two subtypes of MDSCs, monocytic and polymorphonuclear MDSCs, behave differently in these diseases. The initial MDSC proliferation is fundamental for attenuating inflammation in Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), but not in amyotrophic lateral sclerosis (ALS), where MDSC expansion leads to exacerbation of the disease. Moreover, the accumulation of MDSC subtypes in distinct organs changes during the disease. The proliferation of MDSC subtypes occurs at different disease stages and can influence the progression of each neurodegenerative disorder differently.
Collapse
Affiliation(s)
- Lorenza Tamberi
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Alessia Belloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Armanda Pugnaloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| | - Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| |
Collapse
|
7
|
Chen L, Zhu LF, Zhang LY, Chu YH, Dong MH, Pang XW, Yang S, Zhou LQ, Shang K, Xiao J, Wang W, Qin C, Tian DS. Causal association between the peripheral immunity and the risk and disease severity of multiple sclerosis. Front Immunol 2024; 15:1325938. [PMID: 38390334 PMCID: PMC10881847 DOI: 10.3389/fimmu.2024.1325938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Background Growing evidence links immunological responses to Multiple sclerosis (MS), but specific immune factors are still unclear. Methods Mendelian randomization (MR) was performed to investigate the association between peripheral hematological traits, MS risk, and its severity. Then, further subgroup analysis of immune counts and circulating cytokines and growth factors were performed. Results MR revealed higher white blood cell count (OR [95%CI] = 1.26 [1.10,1.44], P = 1.12E-03, P adjust = 3.35E-03) and lymphocyte count (OR [95%CI] = 1.31 [1.15,1.50], P = 5.37E-05, P adjust = 3.22E-04) increased the risk of MS. In further analysis, higher T cell absolute count (OR [95%CI] = 2.04 [1.36,3.08], P = 6.37E-04, P adjust = 2.19E-02) and CD4+ T cell absolute count (OR [95%CI] = 2.11 [1.37,3.24], P = 6.37E-04, P adjust = 2.19E-02), could increase MS risk. While increasing CD25++CD4+ T cell absolute count (OR [95%CI] = 0.75 [0.66,0.86], P = 2.12E-05, P adjust = 1.72E-03), CD25++CD4+ T cell in T cell (OR [95%CI] = 0.79[0.70,0.89], P = 8.54E-05, P adjust = 5.29E-03), CD25++CD4+ T cell in CD4+ T cell (OR [95%CI] = 0.80[0.72,0.89], P = 1.85E-05, P adjust = 1.72E-03), and CD25++CD8+ T cell in T cell (OR [95%CI] = 0.68[0.57,0.81], P = 2.22E-05, P adjust = 1.72E-03), were proved to be causally defensive for MS. For the disease severity, the suggestive association between some traits related to CD4+ T cell, Tregs and MS severity were demonstrated. Moreover, elevated levels of IL-2Ra had a detrimental effect on the risk of MS (OR [95%CI] = 1.22 [1.12,1.32], P = 3.20E-06, P adjust = 1.34E-04). Conclusions This study demonstrated a genetically predicted causal relationship between elevated peripheral immune cell counts and MS. Subgroup analysis revealed a specific contribution of peripheral immune cells, holding potential for further investigations into the underlying mechanisms of MS and its severity.
Collapse
Affiliation(s)
- Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Fang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Lu-Yang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Zanghì A, Di Filippo PS, Avolio C, D’Amico E. Myeloid-derived Suppressor Cells and Multiple Sclerosis. Curr Neuropharmacol 2024; 23:36-57. [PMID: 38988152 PMCID: PMC11519824 DOI: 10.2174/1570159x22999240710142942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 07/12/2024] Open
Abstract
Myeloid-Derived Suppressor Cells (MDSCs) are a heterogeneous population of immature myeloid cells that play important roles in maintaining immune homeostasis and regulating immune responses. MDSCs can be divided into two main subsets based on their surface markers and functional properties: granulocytic MDSCs (G-MDSCs) and monocytic MDSCs (M-MDSCs). Recently greatest attention has been paid to innate immunity in Multiple Sclerosis (MS), so the aim of our review is to provide an overview of the main characteristics of MDSCs in MS and its preclinical model by discussing the most recent data available. The immunosuppressive functions of MDSCs can be dysregulated in MS, leading to an exacerbation of the autoimmune response and disease progression. Antigen-specific peptide immunotherapy, which aims to restore tolerance while avoiding the use of non-specific immunosuppressive drugs, is a promising approach for autoimmune diseases, but the cellular mechanisms behind successful therapy remain poorly understood. Therefore, targeting MDSCs could be a promising therapeutic approach for MS. Various strategies for modulating MDSCs have been investigated, including the use of pharmacological agents, biological agents, and adoptive transfer of exogenous MDSCs. However, it remained unclear whether MDSCs display any therapeutic potential in MS and how this therapy could modulate different aspects of the disease. Collectively, all the described studies revealed a pivotal role for MDSCs in the regulation of MS.
Collapse
Affiliation(s)
- Aurora Zanghì
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Carlo Avolio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Emanuele D’Amico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
9
|
Xavier A, Maltby VE, Ewing E, Campagna MP, Burnard SM, Tegner JN, Slee M, Butzkueven H, Kockum I, Kular L, Ausimmune/AusLong Investigators Group, Jokubaitis VG, Kilpatrick T, Alfredsson L, Jagodic M, Ponsonby AL, Taylor BV, Scott RJ, Lea RA, Lechner-Scott J. DNA Methylation Signatures of Multiple Sclerosis Occur Independently of Known Genetic Risk and Are Primarily Attributed to B Cells and Monocytes. Int J Mol Sci 2023; 24:12576. [PMID: 37628757 PMCID: PMC10454485 DOI: 10.3390/ijms241612576] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Epigenetic mechanisms can regulate how DNA is expressed independently of sequence and are known to be associated with various diseases. Among those epigenetic mechanisms, DNA methylation (DNAm) is influenced by genotype and the environment, making it an important molecular interface for studying disease etiology and progression. In this study, we examined the whole blood DNA methylation profiles of a large group of people with (pw) multiple sclerosis (MS) compared to those of controls. We reveal that methylation differences in pwMS occur independently of known genetic risk loci and show that they more strongly differentiate disease (AUC = 0.85, 95% CI 0.82-0.89, p = 1.22 × 10-29) than known genetic risk loci (AUC = 0.72, 95% CI: 0.66-0.76, p = 9.07 × 10-17). We also show that methylation differences in MS occur predominantly in B cells and monocytes and indicate the involvement of cell-specific biological pathways. Overall, this study comprehensively characterizes the immune cell-specific epigenetic architecture of MS.
Collapse
Affiliation(s)
- Alexandre Xavier
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (A.X.); (S.M.B.); (R.J.S.)
| | - Vicki E. Maltby
- School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (V.E.M.); (R.A.L.)
- Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| | - Ewoud Ewing
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden; (E.E.); (I.K.); (L.K.); (L.A.); (M.J.)
| | - Maria Pia Campagna
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (M.P.C.); (H.B.); (V.G.J.)
| | - Sean M. Burnard
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (A.X.); (S.M.B.); (R.J.S.)
| | - Jesper N. Tegner
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Unit of Computational Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, L8:05, 17176 Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavagen 23A, 17165 Solna, Sweden
| | - Mark Slee
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (M.P.C.); (H.B.); (V.G.J.)
- MSBase Foundation, Melbourne, VIC 3004, Australia
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden; (E.E.); (I.K.); (L.K.); (L.A.); (M.J.)
| | - Lara Kular
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden; (E.E.); (I.K.); (L.K.); (L.A.); (M.J.)
| | | | - Vilija G. Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; (M.P.C.); (H.B.); (V.G.J.)
| | - Trevor Kilpatrick
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3052, Australia; (T.K.); (A.-L.P.)
| | - Lars Alfredsson
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden; (E.E.); (I.K.); (L.K.); (L.A.); (M.J.)
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, 17176 Stockholm, Sweden; (E.E.); (I.K.); (L.K.); (L.A.); (M.J.)
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3052, Australia; (T.K.); (A.-L.P.)
- National Centre for Epidemiology and Public Health, Australian National University, Canberra, ACT 2601, Australia
| | - Bruce V. Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia;
| | - Rodney J. Scott
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (A.X.); (S.M.B.); (R.J.S.)
- Department of Molecular Genetics, Pathology North, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| | - Rodney A. Lea
- School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (V.E.M.); (R.A.L.)
- Centre for Genomics and Personalised Health, School of Biomedical Science, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW 2305, Australia; (V.E.M.); (R.A.L.)
- Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
10
|
Ciancio A, Moretti MC, Natale A, Rodolico A, Signorelli MS, Petralia A, Altamura M, Bellomo A, Zanghì A, D'Amico E, Avolio C, Concerto C. Personality Traits and Fatigue in Multiple Sclerosis: A Narrative Review. J Clin Med 2023; 12:4518. [PMID: 37445551 DOI: 10.3390/jcm12134518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
(1) Background: Multiple sclerosis (MS) is a chronic neurodegenerative autoimmune disease. Fatigue is a prevalent and debilitating symptom that significantly impacts the quality of life of these patients. A relationship between personality traits and fatigue in MS has been hypothesized but not clearly defined. (2) Methods: A literature search was carried out from databases up to April 2023 for studies correlating personality traits and fatigue in patients suffering from MS. (3) Results: A total of ten articles was included; most of the studies depict a neuroticism-fatigue correlation; however, they were not consistent in terms of the fatigue, personality, and covariate assessments. (4) Conclusions: The clinical and methodological heterogeneity of the included studies prevented us from drawing any firm conclusion on the link between personality traits and fatigue in MS. Several models of personality and different fatigue assessments have been found. Despite this, a common pathway shows that the neuroticism trait or similar personality patterns has a role in fatigue diagnosis. This may be a useful target to improve the quality of life and enhance the modification of the disease treatment results. Further homogeneous and longitudinal studies are needed.
Collapse
Affiliation(s)
- Alessia Ciancio
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Maria Claudia Moretti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Antimo Natale
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Antonino Petralia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| | - Mario Altamura
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Aurora Zanghì
- Department of Medical and Surgical Specialities, University of Foggia, 71122 Foggia, Italy
| | - Emanuele D'Amico
- Department of Medical and Surgical Specialities, University of Foggia, 71122 Foggia, Italy
| | - Carlo Avolio
- Department of Medical and Surgical Specialities, University of Foggia, 71122 Foggia, Italy
| | - Carmen Concerto
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, 95123 Catania, Italy
| |
Collapse
|
11
|
Stopping Interferon Beta 1b Does Not Influence the Risk of Disability Accrual in Non-Active SPMS: Results from an Italian Real-World Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106069. [PMID: 35627605 PMCID: PMC9140489 DOI: 10.3390/ijerph19106069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022]
Abstract
Background: No consensus exists on the possibility to stop disease modifying therapies (DMTs) in Secondary Progressive Multiple Sclerosis (SPMS). Methods: The primary outcome was the time to reach 24-weeks confirmed Expanded Disability Status Scale (EDSS) 7.0. We enrolled all patients with a confirmed diagnosis of non-active SPMS (here, absence of clinical or radiological activity for at least 24 months before the conversion) between 1 January 2010 and 31 December 2015, at MS centers of Catania and Foggia, Italy. Patients were divided into two groups, according to the shared decision to stop DMTs (group A) or to maintain/switch to licensed interferon beta 1b for SPMS (group B). A Cox model adjusted with an inverse probability weighted propensity score (IPTW-PS) was employed. Results: A cohort of 311 patients was enrolled, 165 were in group A and 146 were in group B. Patients in the two groups were similar for baseline characteristics. The IPTW-PS adjusted Cox model for the event time to 24-weeks confirmed EDSS 7.0 did not show differences between the two groups (ExpB 0.96, CI 0.739–1.271, p = 0.819). Conclusions: In a real-world setting, in patients with non-active SPMS, the maintaining or switching to the licensed interferon beta 1b did not reduce the risk of reaching confirmed EDSS 7.0.
Collapse
|