1
|
Wang J, Luo Y, Katiyar H, Liang C, Liu Q. The Antiviral Activity of Interferon-Induced Transmembrane Proteins and Virus Evasion Strategies. Viruses 2024; 16:734. [PMID: 38793616 PMCID: PMC11125860 DOI: 10.3390/v16050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Interferons (IFNs) are antiviral cytokines that defend against viral infections by inducing the expression of interferon-stimulated genes (ISGs). Interferon-inducible transmembrane proteins (IFITMs) 1, 2, and 3 are crucial ISG products and members of the CD225 protein family. Compelling evidence shows that IFITMs restrict the infection of many unrelated viruses by inhibiting the virus-cell membrane fusion at the virus entry step via the modulation of lipid composition and membrane properties. Meanwhile, viruses can evade IFITMs' restrictions by either directly interacting with IFITMs via viral glycoproteins or by altering the native entry pathway. At the same time, cumulative evidence suggests context-dependent and multifaceted roles of IFITMs in modulating virus infections and cell signaling. Here, we review the diverse antiviral mechanisms of IFITMs, the viral antagonizing strategies, and the regulation of IFITM activity in host cells. The mechanisms behind the antiviral activity of IFITMs could aid the development of broad-spectrum antivirals and enhance preparedness for future pandemics.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
| | - Yuhang Luo
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
| | - Harshita Katiyar
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Chen Liang
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Qian Liu
- Institute of Parasitology, McGill University, Ste Anne de Bellevue, QC H9X 3V9, Canada; (J.W.); (Y.L.)
- McGill Center for Viral Diseases, Lady Davis Institute, Montreal, QC H3T 1E2, Canada; (H.K.); (C.L.)
| |
Collapse
|
2
|
Huang Z, Cao H, Zeng F, Lin S, Chen J, Luo Y, You J, Kong C, Mai Z, Deng J, Guo W, Chen X, Wang H, Zhou P, Zhang G, Gong L. African Swine Fever Virus MGF505-7R Interacts with Interferon Regulatory Factor 9 to Evade the Type I Interferon Signaling Pathway and Promote Viral Replication. J Virol 2023; 97:e0197722. [PMID: 36815839 PMCID: PMC10062159 DOI: 10.1128/jvi.01977-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
African swine fever (ASF) is an acute and severe infectious disease caused by the ASF virus (ASFV). The mortality rate of ASF in pigs can reach 100%, causing huge economic losses to the pig industry. Here, we found that ASFV protein MGF505-7R inhibited the beta interferon (IFN-β)-mediated Janus-activated kinase-signal transducer and activation of transcription (JAK-STAT) signaling. Our results demonstrate that MGF505-7R inhibited interferon-stimulated gene factor 3 (ISGF3)-mediated IFN-stimulated response element (ISRE) promoter activity. Importantly, we observed that MGF505-7R inhibits ISGF3 heterotrimer formation by interacting with interferon regulatory factor 9 (IRF9) and inhibits the nuclear translocation of ISGF3. Moreover, to demonstrate the role of MGF505-7R in IFN-I signal transduction during ASFV infection, we constructed and evaluated ASFV-ΔMGF505-7R recombinant viruses. ASFV-ΔMGF505-7R restored STAT2 and STAT1 phosphorylation, alleviated the inhibition of ISGF3 nuclear translocation, and showed increased susceptibility to IFN-β, unlike the parental GZ201801 strain. In conclusion, our study shows that ASFV protein MGF505-7R plays a key role in evading IFN-I-mediated innate immunity, revealing a new mode of evasion for ASFV. IMPORTANCE ASF, caused by ASFV, is currently prevalent in Eurasia, with mortality rates reaching 100% in pigs. At present, there are no safe or effective vaccines against ASFV. In this study, we found that the ASFV protein MGF505-7R hinders IFN-β signaling by interacting with IRF9 and inhibiting the formation of ISGF3 heterotrimers. Of note, we demonstrated that MGF505-7R plays a role in the immune evasion of ASFV in infected hosts and that recombinant viruses alleviated the effect on type I IFN (IFN-I) signaling and exhibited increased susceptibility to IFN-β. This study provides a theoretical basis for developing vaccines against ASFV using strains with MGF505-7R gene deletions.
Collapse
Affiliation(s)
- Zhao Huang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Haoxuan Cao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Fanliang Zeng
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Sizhan Lin
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Jianglin Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yi Luo
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianyi You
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Cuiying Kong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhanzhuo Mai
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Jie Deng
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weiting Guo
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Xiongnan Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Heng Wang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Pei Zhou
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Lang Gong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou, China
| |
Collapse
|
3
|
Yu L, Zhu Z, Deng J, Tian K, Li X. Antagonisms of ASFV towards Host Defense Mechanisms: Knowledge Gaps in Viral Immune Evasion and Pathogenesis. Viruses 2023; 15:574. [PMID: 36851786 PMCID: PMC9963191 DOI: 10.3390/v15020574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
African swine fever (ASF) causes high morbidity and mortality of both domestic pigs and wild boars and severely impacts the swine industry worldwide. ASF virus (ASFV), the etiologic agent of ASF epidemics, mainly infects myeloid cells in swine mononuclear phagocyte system (MPS), including blood-circulating monocytes, tissue-resident macrophages, and dendritic cells (DCs). Since their significant roles in bridging host innate and adaptive immunity, these cells provide ASFV with favorable targets to manipulate and block their antiviral activities, leading to immune escape and immunosuppression. To date, vaccines are still being regarded as the most promising measure to prevent and control ASF outbreaks. However, ASF vaccine development is delayed and limited by existing knowledge gaps in viral immune evasion, pathogenesis, etc. Recent studies have revealed that ASFV can employ diverse strategies to interrupt the host defense mechanisms via abundant self-encoded proteins. Thus, this review mainly focuses on the antagonisms of ASFV-encoded proteins towards IFN-I production, IFN-induced antiviral response, NLRP3 inflammasome activation, and GSDMD-mediated pyroptosis. Additionally, we also make a brief discussion concerning the potential challenges in future development of ASF vaccine.
Collapse
Affiliation(s)
- Liangzheng Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Junhua Deng
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Kegong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Netherton CL, Shimmon GL, Hui JYK, Connell S, Reis AL. African Swine Fever Virus Host-Pathogen Interactions. Subcell Biochem 2023; 106:283-331. [PMID: 38159232 DOI: 10.1007/978-3-031-40086-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
African swine fever virus is a complex double-stranded DNA virus that exhibits tropism for cells of the mononuclear phagocytic system. Virus replication is a multi-step process that involves the nucleus of the host cell as well the formation of large perinuclear sites where progeny virions are assembled prior to transport to, and budding through, the plasma membrane. Like many viruses, African swine fever virus reorganises the cellular architecture to facilitate its replication and has evolved multiple mechanisms to avoid the potential deleterious effects of host cell stress response pathways. However, how viral proteins and virus-induced structures trigger cellular stress pathways and manipulate the subsequent responses is still relatively poorly understood. African swine fever virus alters nuclear substructures, modulates autophagy, apoptosis and the endoplasmic reticulum stress response pathways. The viral genome encodes for at least 150 genes, of which approximately 70 are incorporated into the virion. Many of the non-structural genes have not been fully characterised and likely play a role in host range and modifying immune responses. As the field moves towards approaches that take a broader view of the effect of expression of individual African swine fever genes, we summarise how the different steps in virus replication interact with the host cell and the current state of knowledge on how it modulates the resulting stress responses.
Collapse
|
5
|
Berbamine Hydrochloride Inhibits African Swine Fever Virus Infection In Vitro. Molecules 2022; 28:molecules28010170. [PMID: 36615369 PMCID: PMC9822360 DOI: 10.3390/molecules28010170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
African swine fever virus (ASFV) causes a viral disease in swine with a mortality rate of approximately 100%, threatening the global pig industry's economic development. However, vaccines are not yet commercially available, and other antiviral therapeutics, such as antiviral drugs, are urgently needed. In this study, berbamine hydrochloride, a natural bis-benzylisoquinoline alkaloid isolated from the traditional Chinese herb Berberis amurensis, showed significant antiviral activity against ASFV. The 50% cytotoxic concentration (CC50) of berbamine hydrochloride in porcine alveolar macrophages (PAMs) was 27.89 μM. The antiviral activity assay demonstrated that berbamine hydrochloride inhibits ASFV in a dose-dependent manner. In addition, a 4.14 log TCID50 decrease in the viral titre resulting from non-cytotoxic berbamine hydrochloride was found. Moreover, the antiviral activity of berbamine hydrochloride was maintained for 48h and took effect at multiplicities of infection (MOI) of 0.01, 0.1, and 1. The time-of-addition analysis revealed an inhibitory effect throughout the entire virus life-cycle. A subsequent viral entry assay verified that berbamine hydrochloride blocks the early stage of ASFV infection. Moreover, similar anti-ASFV activity of berbamine hydrochloride was also found in PK-15 and 3D4/21 cells. In summary, these results indicate that berbamine hydrochloride is an effective anti-ASFV natural product and may be considered a novel antiviral drug.
Collapse
|